CLOSE
Original image

Ray Kurzweil's Pill Habit

Original image

Ray Kurzweil is probably best known for his 70's era reading machines -- early speech synthesizers that could optically scan printed words, recognize them (despite being in multiple typefaces), and speak them back. (We had one of these gizmos at my public library when I was a kid -- it was an amazing piece of gear.) He's also famous for inventing music synthesizers, and it's not unusual to see the name Kurzweil emblazoned on a digital piano.

These days he's typically referred to as a "futurist" because of his confidence in a coming singularity: a moment when human life changes radically due to advances in technology. At his current age of 60, Kurzweil probably has some years left in him -- but he's not taking any chances. He's actively working to prolong his life in order to be around when the singularity occurs.

Wired recently ran an excellent profile of Kurzweil. The profile explains a lot about what Kurzweil thinks is going to happen in coming years, but also spends a good deal of time on the specifics of his health regimen. Here's a snippet:

Kurzweil does not believe in half measures. He takes 180 to 210 vitamin and mineral supplements a day, so many that he doesn't have time to organize them all himself. So he's hired a pill wrangler, who takes them out of their bottles and sorts them into daily doses, which he carries everywhere in plastic bags. Kurzweil also spends one day a week at a medical clinic, receiving intravenous longevity treatments. The reason for his focus on optimal health should be obvious: If the singularity is going to render humans immortal by the middle of this century, it would be a shame to die in the interim. To perish of a heart attack just before the singularity occurred would not only be sad for all the ordinary reasons, it would also be tragically bad luck, like being the last soldier shot down on the Western Front moments before the armistice was proclaimed.

[...] He has unlucky genes: His father died of heart disease at 58, his grandfather in his early forties. He himself was diagnosed with high cholesterol and incipient type 2 diabetes — both considered to be significant risk factors for early death — when only 35. He felt his bad luck as a cloud hanging over his life.

Read the rest for lots more on Kurzweil, the singularity, and photos of all the pills the man takes. There's also an extensive Wikipedia page on him, including a list of his fourteen honorary doctorates. Finally, if you have the mental_floss magazine Vol 6, Issue 1, check page 28 for our take on him.

(Photo by Michael Lutch, courtesy of Kurzweil Technologies, Inc.)

Original image
iStock // Ekaterina Minaeva
technology
arrow
Man Buys Two Metric Tons of LEGO Bricks; Sorts Them Via Machine Learning
May 21, 2017
Original image
iStock // Ekaterina Minaeva

Jacques Mattheij made a small, but awesome, mistake. He went on eBay one evening and bid on a bunch of bulk LEGO brick auctions, then went to sleep. Upon waking, he discovered that he was the high bidder on many, and was now the proud owner of two tons of LEGO bricks. (This is about 4400 pounds.) He wrote, "[L]esson 1: if you win almost all bids you are bidding too high."

Mattheij had noticed that bulk, unsorted bricks sell for something like €10/kilogram, whereas sets are roughly €40/kg and rare parts go for up to €100/kg. Much of the value of the bricks is in their sorting. If he could reduce the entropy of these bins of unsorted bricks, he could make a tidy profit. While many people do this work by hand, the problem is enormous—just the kind of challenge for a computer. Mattheij writes:

There are 38000+ shapes and there are 100+ possible shades of color (you can roughly tell how old someone is by asking them what lego colors they remember from their youth).

In the following months, Mattheij built a proof-of-concept sorting system using, of course, LEGO. He broke the problem down into a series of sub-problems (including "feeding LEGO reliably from a hopper is surprisingly hard," one of those facts of nature that will stymie even the best system design). After tinkering with the prototype at length, he expanded the system to a surprisingly complex system of conveyer belts (powered by a home treadmill), various pieces of cabinetry, and "copious quantities of crazy glue."

Here's a video showing the current system running at low speed:

The key part of the system was running the bricks past a camera paired with a computer running a neural net-based image classifier. That allows the computer (when sufficiently trained on brick images) to recognize bricks and thus categorize them by color, shape, or other parameters. Remember that as bricks pass by, they can be in any orientation, can be dirty, can even be stuck to other pieces. So having a flexible software system is key to recognizing—in a fraction of a second—what a given brick is, in order to sort it out. When a match is found, a jet of compressed air pops the piece off the conveyer belt and into a waiting bin.

After much experimentation, Mattheij rewrote the software (several times in fact) to accomplish a variety of basic tasks. At its core, the system takes images from a webcam and feeds them to a neural network to do the classification. Of course, the neural net needs to be "trained" by showing it lots of images, and telling it what those images represent. Mattheij's breakthrough was allowing the machine to effectively train itself, with guidance: Running pieces through allows the system to take its own photos, make a guess, and build on that guess. As long as Mattheij corrects the incorrect guesses, he ends up with a decent (and self-reinforcing) corpus of training data. As the machine continues running, it can rack up more training, allowing it to recognize a broad variety of pieces on the fly.

Here's another video, focusing on how the pieces move on conveyer belts (running at slow speed so puny humans can follow). You can also see the air jets in action:

In an email interview, Mattheij told Mental Floss that the system currently sorts LEGO bricks into more than 50 categories. It can also be run in a color-sorting mode to bin the parts across 12 color groups. (Thus at present you'd likely do a two-pass sort on the bricks: once for shape, then a separate pass for color.) He continues to refine the system, with a focus on making its recognition abilities faster. At some point down the line, he plans to make the software portion open source. You're on your own as far as building conveyer belts, bins, and so forth.

Check out Mattheij's writeup in two parts for more information. It starts with an overview of the story, followed up with a deep dive on the software. He's also tweeting about the project (among other things). And if you look around a bit, you'll find bulk LEGO brick auctions online—it's definitely a thing!

Original image
quiz
arrow
Name the Author Based on the Character
May 23, 2017
Original image
SECTIONS
BIG QUESTIONS
BIG QUESTIONS
WEATHER WATCH
BE THE CHANGE
JOB SECRETS
QUIZZES
WORLD WAR 1
SMART SHOPPING
STONES, BONES, & WRECKS
#TBT
THE PRESIDENTS
WORDS
RETROBITUARIES