My Favorite Monsters: the Thing Without a Name

We've talked about several different archetypes of monster here thus far -- the zombie, which includes other mute, lumbering killing machines like Jason and Michael Myers, and the vampire, who if you take away the fangs and the literal need for blood looks a lot like Hannibal Lecter -- but none of these monsters have been too conceptually challenging. (The zombie eats your brain. The vampire drinks your blood. Boom.) By comparison, the Thing Without a Name is downright intellectual.

It's also my favorite. Unfortunately, you don't see the TWaN on celluloid very much, because by its very nature it's difficult to describe, and thus difficult to film. It resides more in the province of horror fiction, where twisted souls like Poe and HP Lovecraft perfected it. Here's the TWaN's deal, in a nutshell: usually an entity from another dimension, another reality or Hell, it's so mind-rapingly horrible that in most cases to even look upon the TWaN means you'll be spending the rest of your days in a straitjacket.

Many of Lovecraft's best stories deal with TWaNs, like his oft-imitated "At the Mountains of Madness," about a team of Antarctic explorers who find the strange ruins of an alien outpost behind a range of long-unscalable mountains. When a few of the the horrible, ululating creatures who live there emerge and chase the team, the one man who looks back at them promptly loses his mind, and is later unable (or unwilling) to describe what he saw. (If this story and its title reminds you of John Carpenter's cruddy In the Mouth of Madness, it should; it's one of many cinematic homages to Lovecraft's work and this story in particular. In it, the latest novel by a Stephen King-esque author named Sutter Cane drives people who read it insane, turning Cane's agent into an axe-wielding maniac and causing riots in the streets. Ooookay.)
mouth-of-madness-fear.jpgAbove: in the aforementioned shlockfest, Sam Neill saw something he shouldn't have. Now THAT'S crazy.

More popularly known, Stephen King's It trades on classic Lovecraftian Thing Without a Name tropes. For those of you who only remember Pennywise the Clown, don't forget that "It" was a shape-shifter -- one way to get around never showing your TWaN is to have it manifest itself in different forms "which the human mind can comprehend." Wikipedia elaborates:

"'It' apparently originated in a void containing and surrounding the Universe, a place referred to in the novel as the "Macroverse". Its real name (if indeed It has one) is unknown. Likewise, It's true form is never truly comprehended. Its final form in the physical realm is that of an enormous spider, but even this is only the closest the human mind can get to approximating It's actual physical form. Its natural form exists in a realm beyond the physical, which It calls the 'deadlights.' Coming face to face with the deadlights drives any living being instantly insane."


It's a little corny, maybe, but I really dig the whole it'll-drive-you-insane thing. It trades on larger issues we have as human beings in the world, and -- not to get Biblical on you or anything -- some Old Testament spookiness that I've always found compelling. When Job begs God for an explanation for the horrible suffering he's endured, God finally appears to Job -- but not as a benign old man the sky. Instead Job is confronted by an horrific, baffling whirlwind which some Biblical scholars translate to be called simply "The Unnameable," and the story ends with Job getting no answer and being kind of sorry he asked in the first place; it's made starkly clear that he'll never comprehend the true nature of the universe. Like, wow -- so God is a Thing Without a Name, too!

There are plenty of references to this kind of intense, frightening revelatory experience in religious literature -- what Thoreau calls (paraphrasing) "the light of truth that will put out your eyes." Naked reality is too much for our little minds to handle. It's a theme that's used in religious literature and horror literature alike; two sides of the same coin. Too much knowledge can destroy you -- don't bite the apple; don't fly too high or your wings will melt -- etc etc. My favorite example is the Tower of Babel story: hubristic humans try to built a tower to Heaven so that they might know the mind of God. Instead their tower is destroyed and their minds are confused; the story ends with them running around like chickens with their heads cut off, all speaking different languages. In other words, you don't have to know everything, and in fact it's better if you don't. Look back at Sodom and Gomorrah as God is destroying them and you might turn into a pillar of salt; look back at the horrible Antarctic Elder Being that's ululating behind you and you just might lose your mind.

Stephen King briefly lays out his ideas on the subject (while talking about Lovecraft) in his exegesis on horror, Danse Macabre:

The best of [these stories] make us feel the size of the universe we hang suspended in, and suggest shadowy forces that could destroy us all if they so much as grunted in their sleep. After all, what is the paltry evil of the A-bomb when compared to [Lovecraftian creatures] Nyarlathotep, the Crawling Chaos, or Yog-Sogoth, the Goat with a Thousand Young?"

On the flip side of that coin, at the end of Job, our titular hero also feels the powerful, incomprehensible hugeness of the universe, but rather than losing his mind, he loses his hubris:

"Therefore I will be quiet / Comforted that I am but dust."

In closing, let's rock out to Metallica's take on the subject with their song "The Thing That Should Not Be."

Live Smarter
Nervous About Asking for a Job Referral? LinkedIn Can Now Do It for You

For most people, asking for a job referral can be daunting. What if the person being approached shoots you down? What if you ask the "wrong" way? LinkedIn, which has been aggressively establishing itself as a catch-all hub for employment opportunities, has a solution, as Mashable reports.

The company recently launched "Ask for a Referral," an option that will appear to those browsing job listings. When you click on a job listed by a business that also employs one of your LinkedIn first-degree connections, you'll have the opportunity to solicit a referral from that individual.

The default message that LinkedIn creates is somewhat generic, but it hits the main topics—namely, prompting you to explain how you and your connection know one another and why you'd be a good fit for the position. If you're the one being asked for a referral, the site will direct you to the job posting and offer three prompts for a response, ranging from "Sure…" to "Sorry…".

LinkedIn says the referral option may not be available for all posts or all users, as the feature is still being rolled out. If you do see the option, it will likely pay to take advantage of it: LinkedIn reports that recruiters who receive both a referral and a job application from a prospective hire are four times more likely to contact that individual.

[h/t Mashable]

Dean Mouhtaropoulos/Getty Images
Essential Science
What Is a Scientific Theory?
Dean Mouhtaropoulos/Getty Images
Dean Mouhtaropoulos/Getty Images

In casual conversation, people often use the word theory to mean "hunch" or "guess": If you see the same man riding the northbound bus every morning, you might theorize that he has a job in the north end of the city; if you forget to put the bread in the breadbox and discover chunks have been taken out of it the next morning, you might theorize that you have mice in your kitchen.

In science, a theory is a stronger assertion. Typically, it's a claim about the relationship between various facts; a way of providing a concise explanation for what's been observed. The American Museum of Natural History puts it this way: "A theory is a well-substantiated explanation of an aspect of the natural world that can incorporate laws, hypotheses and facts."

For example, Newton's theory of gravity—also known as his law of universal gravitation—says that every object, anywhere in the universe, responds to the force of gravity in the same way. Observational data from the Moon's motion around the Earth, the motion of Jupiter's moons around Jupiter, and the downward fall of a dropped hammer are all consistent with Newton's theory. So Newton's theory provides a concise way of summarizing what we know about the motion of these objects—indeed, of any object responding to the force of gravity.

A scientific theory "organizes experience," James Robert Brown, a philosopher of science at the University of Toronto, tells Mental Floss. "It puts it into some kind of systematic form."


A theory's ability to account for already known facts lays a solid foundation for its acceptance. Let's take a closer look at Newton's theory of gravity as an example.

In the late 17th century, the planets were known to move in elliptical orbits around the Sun, but no one had a clear idea of why the orbits had to be shaped like ellipses. Similarly, the movement of falling objects had been well understood since the work of Galileo a half-century earlier; the Italian scientist had worked out a mathematical formula that describes how the speed of a falling object increases over time. Newton's great breakthrough was to tie all of this together. According to legend, his moment of insight came as he gazed upon a falling apple in his native Lincolnshire.

In Newton's theory, every object is attracted to every other object with a force that’s proportional to the masses of the objects, but inversely proportional to the square of the distance between them. This is known as an “inverse square” law. For example, if the distance between the Sun and the Earth were doubled, the gravitational attraction between the Earth and the Sun would be cut to one-quarter of its current strength. Newton, using his theories and a bit of calculus, was able to show that the gravitational force between the Sun and the planets as they move through space meant that orbits had to be elliptical.

Newton's theory is powerful because it explains so much: the falling apple, the motion of the Moon around the Earth, and the motion of all of the planets—and even comets—around the Sun. All of it now made sense.


A theory gains even more support if it predicts new, observable phenomena. The English astronomer Edmond Halley used Newton's theory of gravity to calculate the orbit of the comet that now bears his name. Taking into account the gravitational pull of the Sun, Jupiter, and Saturn, in 1705, he predicted that the comet, which had last been seen in 1682, would return in 1758. Sure enough, it did, reappearing in December of that year. (Unfortunately, Halley didn't live to see it; he died in 1742.) The predicted return of Halley's Comet, Brown says, was "a spectacular triumph" of Newton's theory.

In the early 20th century, Newton's theory of gravity would itself be superseded—as physicists put it—by Einstein's, known as general relativity. (Where Newton envisioned gravity as a force acting between objects, Einstein described gravity as the result of a curving or warping of space itself.) General relativity was able to explain certain phenomena that Newton's theory couldn't account for, such as an anomaly in the orbit of Mercury, which slowly rotates—the technical term for this is "precession"—so that while each loop the planet takes around the Sun is an ellipse, over the years Mercury traces out a spiral path similar to one you may have made as a kid on a Spirograph.

Significantly, Einstein’s theory also made predictions that differed from Newton's. One was the idea that gravity can bend starlight, which was spectacularly confirmed during a solar eclipse in 1919 (and made Einstein an overnight celebrity). Nearly 100 years later, in 2016, the discovery of gravitational waves confirmed yet another prediction. In the century between, at least eight predictions of Einstein's theory have been confirmed.


And yet physicists believe that Einstein's theory will one day give way to a new, more complete theory. It already seems to conflict with quantum mechanics, the theory that provides our best description of the subatomic world. The way the two theories describe the world is very different. General relativity describes the universe as containing particles with definite positions and speeds, moving about in response to gravitational fields that permeate all of space. Quantum mechanics, in contrast, yields only the probability that each particle will be found in some particular location at some particular time.

What would a "unified theory of physics"—one that combines quantum mechanics and Einstein's theory of gravity—look like? Presumably it would combine the explanatory power of both theories, allowing scientists to make sense of both the very large and the very small in the universe.


Let's shift from physics to biology for a moment. It is precisely because of its vast explanatory power that biologists hold Darwin's theory of evolution—which allows scientists to make sense of data from genetics, physiology, biochemistry, paleontology, biogeography, and many other fields—in such high esteem. As the biologist Theodosius Dobzhansky put it in an influential essay in 1973, "Nothing in biology makes sense except in the light of evolution."

Interestingly, the word evolution can be used to refer to both a theory and a fact—something Darwin himself realized. "Darwin, when he was talking about evolution, distinguished between the fact of evolution and the theory of evolution," Brown says. "The fact of evolution was that species had, in fact, evolved [i.e. changed over time]—and he had all sorts of evidence for this. The theory of evolution is an attempt to explain this evolutionary process." The explanation that Darwin eventually came up with was the idea of natural selection—roughly, the idea that an organism's offspring will vary, and that those offspring with more favorable traits will be more likely to survive, thus passing those traits on to the next generation.


Many theories are rock-solid: Scientists have just as much confidence in the theories of relativity, quantum mechanics, evolution, plate tectonics, and thermodynamics as they do in the statement that the Earth revolves around the Sun.

Other theories, closer to the cutting-edge of current research, are more tentative, like string theory (the idea that everything in the universe is made up of tiny, vibrating strings or loops of pure energy) or the various multiverse theories (the idea that our entire universe is just one of many). String theory and multiverse theories remain controversial because of the lack of direct experimental evidence for them, and some critics claim that multiverse theories aren't even testable in principle. They argue that there's no conceivable experiment that one could perform that would reveal the existence of these other universes.

Sometimes more than one theory is put forward to explain observations of natural phenomena; these theories might be said to "compete," with scientists judging which one provides the best explanation for the observations.

"That's how it should ideally work," Brown says. "You put forward your theory, I put forward my theory; we accumulate a lot of evidence. Eventually, one of our theories might prove to obviously be better than the other, over some period of time. At that point, the losing theory sort of falls away. And the winning theory will probably fight battles in the future."


More from mental floss studios