CLOSE

# Fun with Venn and Euler Diagrams

A Venn diagram is a mathematical illustration that shows all of the possible mathematical or logical relationships between sets. A Euler diagram resembles a Venn diagram, but does not neccessarily show all possible intersections of the sets. A Euler diagram is often more useful for showing real world data, because not all sets partially overlap with all other sets.

I used the 3 Circle Venn Diagram Applet to make a diagram of food preferences in my family. I have one child who won't eat much in the way of meat or vegetables, and another who dislikes carbs. The is a classic Venn diagram, which explains why I don't cook as often as I used to.

This graphic is labeled as a Venn diagram, but it is actually a Euler diagram, because at no point does true happiness intersect with wearing pants. At least for the person who made the diagram.

More diagram fun, after the jump.

If the circles don't intersect, it's not a Venn diagram. Which can be a very sad thing if you're a circle. This design was found at Threadless T-Shirts. However, Euler diagrams may overlap or not. But Euler is not what the blue circle had in mind.

I came across this very useful image last week that started my quest to learn the difference between a Venn diagram and a Euler diagram. It explains the geographic terminology used in that area of the eastern Atlantic that confuses Americans. The author labeled the item as The Great British Venn Diagram, then explaned that it was actually a Euler diagram. No doubt people are more familiar with Venn. But no matter how geographically accurate the place names are, Irish commenters predictably objected to being included in anything labeled with the word "British". Another such diagram that includes more islands can be found here.

These sweet and sour doodles are true Venn diagrams. They were produced by Jessica Hagy of Indexed, a blog full of wonderful diagrams and graphs jotted on index cards.

Rob Harvilla used Venn and other diagrams to deconstruct the song "This Is Why I'm Hot" by Mims at The Villlage Voice. The diagrams clearly show that the lyrics make no sense at all. Nevertheless, the song was number one at the time this was written.

Speaking of music, here's a t-shirt for music snobs featuring a two-set Venn diagram. From the product page:

Nothing is any good if other people like it. We've just proven it mathematically. I have a theory that the only thing cartoonists bothered learning in math class was Venn Diagrams.

Randall Munroe at xkcd has the geekiest love notes ever. This classic Venn diagram is so sweet and simple, until he started to fill in the zones.

Venn diagrams and Euler diagrams are just two more of the many handy learning devices that are used for strange or comedic purposes. See also Periodic Tableware, More Periodic Tableware, and Fun with Flow Charts.

iStock
arrow
science
5 Ways You Do Complex Math in Your Head Without Realizing It
iStock

The one thing that people who love math and people who hate math tend to agree on is this: You're only really doing math if you sit down and write formal equations. This idea is so widely embraced that to suggest otherwise is "to start a fight," says Maria Droujkova, math educator and founder of Natural Math, a site for kids and parents who want to incorporate math into their daily lives. Mathematicians cherish their formal proofs, considering them the best expression of their profession, while the anti-math don't believe that much of the math they studied in school applies to "real life."

But in reality, "we do an awful lot of things in our daily lives that are profoundly mathematical, but that may not look that way on the surface," Christopher Danielson, a Minnesota-based math educator and author of a number of books, including Common Core Math for Parents for Dummies, tells Mental Floss. Our mathematical thinking includes not just algebra or geometry, but trigonometry, calculus, probability, statistics, and any of the at least 60 types [PDF] of math out there. Here are five examples.

#### 1. COOKING // ALGEBRA

Of all the maths, algebra seems to draw the most ire, with some people even writing entire books on why college students shouldn't have to endure it because, they claim, it holds the students back from graduating. But if you cook, you're likely doing algebra. When preparing a meal, you often have to think proportionally, and "reasoning with proportions is one of the cornerstones of algebraic thinking," Droujkova tells Mental Floss.

You're also thinking algebraically whenever you're adjusting a recipe, whether for a larger crowd or because you have to substitute or reduce ingredients. Say, for example, you want to make pancakes, but you only have two eggs left and the recipe calls for three. How much flour should you use when the original recipe calls for one cup? Since one cup is 8 ounces, you can figure this out using the following algebra equation: n/8 : 2/3.

Lucy Quintanilla

However, when thinking proportionally, you can just reason that since you have one-third less eggs, you should just use one-third less flour.

You're also doing that proportional thinking when you consider the cooking times of the various courses of your meal and plan accordingly so all the elements of your dinner are ready at the same time. For example, it will usually take three times as long to cook rice as it will a flattened chicken breast, so starting the rice first makes sense.

"People do mathematics in their own way," Droujkova says, "even if they cannot do it in a very formalized way."

#### 2. LISTENING TO MUSIC // PATTERN THEORY AND SYMMETRY

iStock

The making of music involves many different types of math, from algebra and geometry to group theory and pattern theory and beyond, and a number of mathematicians (including Pythagoras and Galileo) and musicians have connected the two disciplines (Stravinsky claimed that music is "something like mathematical thinking").

But simply listening to music can make you think mathematically too. When you recognize a piece of music, you are identifying a pattern of sound. Patterns are a fundamental part of math; the branch known as pattern theory is applied to everything from statistics to machine learning.

Danielson, who teaches kids about patterns in his math classes, says figuring out the structure of a pattern is vital for understanding math at higher levels, so music is a great gateway: "If you're thinking about how two songs have similar beats, or time signatures, or you're creating harmonies, you're working on the structure of a pattern and doing some really important mathematical thinking along the way."

So maybe you weren't doing math on paper if you were debating with your friends about whether Tom Petty was right to sue Sam Smith in 2015 over "Stay With Me" sounding a lot like "I Won't Back Down," but you were still thinking mathematically when you compared the songs. And that earworm you can't get out of your head? It follows a pattern: intro, verse, chorus, bridge, end.

When you recognize these kinds of patterns, you're also recognizing symmetry (which in a pop song tends to involve the chorus and the hook, because both repeat). Symmetry [PDF] is the focus of group theory, but it's also key to geometry, algebra, and many other maths.

#### 3. KNITTING AND CROCHETING // GEOMETRIC THINKING

Cheryl, Flickr // CC BY-SA 2.0

Droujkova, an avid crocheter, she says she is often intrigued by the very mathematical discussions fellow crafters have online about the best patterns for their projects, even if they will often insist they are awful at math or uninterested in it. And yet, such crafts cannot be done without geometric thinking: When you knit or crochet a hat, you're creating a half sphere, which follows a geometric formula.

Droujkova isn't the only math lover who has made the connection between geometry and crocheting. Cornell mathematician Daina Taimina found crocheting to be the perfect way to illustrate the geometry of a hyperbolic plane, or a surface that has a constant negative curvature, like a lettuce leaf. Hyperbolic geometry is also used in navigation apps, and explains why flat maps distort the size of landforms, making Greenland, for example, look far larger on most maps than it actually is.

#### 4. PLAYING POOL // TRIGONOMETRY

iStock

If you play billiards, pool, or snooker, it's very likely that you are using trigonometric reasoning. Sinking a ball into a pocket by using another ball involves understanding not just how to measure angles by sight but triangulation, which is the cornerstone of trigonometry. (Triangulation is a surprisingly accurate way to measure distance. Long before powered flight was possible, surveyors used triangulation to measure the heights of mountains from their bases and were off by only a matter of feet.)

In a 2010 paper [PDF], Louisiana mathematician Rick Mabry studied the trigonometry (and basic calculus) of pool, focusing on the straight-in shot. In a bar in Shreveport, Louisiana, he scribbled equations on napkins for each shot, and he calculated the most difficult straight-in shot of all. Most experienced pool players would say it’s one where the target ball is halfway between the pocket and the cue ball. But that, according to Mabry’s equations, turned out not to be true. The hardest shot of all had a surprising feature: The distance from the cue ball to the pocket was exactly 1.618 times the distance from the target ball to the pocket. That number is the golden ratio, which is found everywhere in nature—and, apparently, on pool tables.

Do you need to consider the golden ratio when deciding where to place the cue ball? Nope, unless you want to prove a point, or set someone else up to lose. You're doing the trig automatically. The pool sharks at the bar must have known this, because someone threw away Mabry's math napkins.

#### 5. RE-TILING THE BATHROOM // CALCULUS

iStock

Many students don't get to calculus in high school, or even in college, but a cornerstone of that branch of math is optimization—or figuring out how to get the most precise use of a space or chunk of time.

Consider a home improvement project where you're confronted with tiling around something whose shape doesn't fit a geometric formula like a circle or rectangle, such as the asymmetric base of a toilet or freestanding sink. This is where the fundamental theorem of calculus—which can be used to calculate the precise area of an irregular object—comes in handy. When thinking about how those tiles will best fit around the curve of that sink or toilet, and how much of each tile needs to be cut off or added, you're employing the kind of reasoning done in a Riemann sum.

Riemann sums (named after a 19th-century German mathematician) are crucial to explaining integration in calculus, as tangible introductions to the more precise fundamental theorem. A graph of a Riemann sum shows how the area of a curve can be found by building rectangles along the x, or horizontal axis, first up to the curve, and then over it, and then averaging the distance between the over- and underlap to get a more precise measurement.

iStock
arrow
fun
15 Pi Day Math Problems to Solve
iStock

Happy Pi Day! For decades, math lovers have been honoring this crucial irrational constant on March 14 (or 3/14, the first three digits of the ratio of a circle's circumference to its diameter) every year. The U.S. House of Representatives even passed a non-binding resolution in 2009 to recognize the date. Join the celebration by solving (or at least puzzling over) these problems from a varied collection of pi enthusiasts.

#### PI IN SPACE

iStock

Pi is a vital number for NASA engineers, who use it to calculate everything from trajectories of spacecraft to densities of space objects. NASA's Jet Propulsion Laboratory, located in Pasadena, California, has celebrated Pi Day for a few years with a Pi in the Sky challenge, which gives non rocket engineers a chance to solve the problems they solve every day. The following problems are from Pi in the Sky 3 (and you can find more thorough solutions and tips there). JPL has brand-new problems for this year's event, Pi in the Sky 5.

#### 1. HAZY HALO

This undated NASA handout shows Saturn's moon, Titan, in ultraviolet and infrared wavelengths. The Cassini spacecraft took the image while on its mission to gather information on Saturn, its rings, atmosphere and moons. The different colors represent various atmospheric content on Titan.
NASA, Getty Images

Given that Saturn's moon Titan has a radius of 2575 kilometers, which is covered by a 600-kilometer atmosphere, what percentage of the moon's volume is atmospheric haze? Also, if scientists hope to create a global map of Titan's surface, what is the surface area that a future spacecraft would have to map?

[Answer: 47 percent; 83,322,891 square kilometers]

#### 2. ROUND RECON

NASA's Earth-orbiting Hubble Space Telescope took this picture June 26, 2003 of Mars.
NASA, Getty Images

Given that Mars has a polar diameter of 6752 kilometers, and the Mars Reconnaissance Orbiter comes as close to the planet as 255 kilometers at the south pole and 320 kilometers at the north pole, how far does MRO travel in one orbit? (JPL advises, "MRO's orbit is near enough to circular that the formulas for circles can be used.")

#### 3. SUN SCREEN

In this handout provided by NASA, the planet Mercury is seen in silhouette, lower left of image, as it transits across the face of the sun on May 9, 2016 as viewed from Boyertown, Pennsylvania. Mercury passes between Earth and the sun only about 13 times a century, with the previous transit taking place in 2006.
NASA/Bill Ingalls, Getty Images

If 1360.8 w/m^2 of solar energy reaches the top of Earth's atmosphere, how many fewer watts reach Earth when Mercury (diameter = 12 seconds) transits the Sun (diameter = 1909 seconds)?

#### PUTTING THE PI IN PIZZA

iStock

People often celebrate Pi Day by eating pie, but what is considered a "pie" is subjective. Pizza Hut considers its main offerings pies, and got into the spirit of Pi Day in 2016 by asking their customers to solve several math problems from English mathematician and Princeton professor John Conway, with promises of free pizza for winners for 3.14 years. Below are two of his fiendishly tricky problems. Unfortunately, even if you solve them, your chance at free pizza is long gone.

#### 4. 10-DIGIT GUESS

iStock

I'm thinking of a 10-digit integer whose digits are all distinct. It happens that the number formed by the first n of them is divisible by n for each n from 1 to 10. What is my number?

#### 5. PUZZLE CLUB

iStock

Our school's puzzle club meets in one of the classrooms every Friday after school.

Last Friday, one of the members said, "I've hidden a list of numbers in this envelope that add up to the number of this room." A girl said, "That's obviously not enough information to determine the number of the room. If you told us the number of numbers in the envelope and their product, would that be enough to work them all out?"

He (after scribbling for some time): "No." She (after scribbling for some more time): "Well, at least I've worked out their product."

What is the number of the school room we meet in?

[Answer: Room #12 (The numbers in the envelope are either: 6222 or 4431, which both add up to 12 and the product is 48.)]

#### COM-PI-TITIVE MATH

iStock

Po-Shen Loh coached the U.S. Mathematical Olympiad team to victory in 2015 and 2016. The back-to-back win was particularly impressive considering Team USA had not won the International Mathematical Olympiad (or IMO) in 21 years. When not coaching, Loh is an associate math professor at Carnegie Mellon University. His website, Expii, challenges readers weekly with a large range of problems. Expii has celebrated Pi Day for several years now—this year it published a video that uses an actual pie to help us visualize pi better—and the following problems are from its past challenges.

#### 6. PIESTIMATE

iStock

Pi has long been noted as one of the most useful mathematical constants. Yet, due to the fact that it is an irrational number, it can never be expressed exactly as a fraction, and its decimal representation never ends. We have come to estimate π often, and all of these have been used as approximations to π in the past. Which is the closest one?

A) 3
B) 3.14
C) 22/7
D) 4
E) Square root of 10

#### 7. PHONE TAG

iStock

When Expii's founding team registered the organization in the United States, they needed to select a telephone number. As math enthusiasts, they claimed pi in the new 844 toll-free area code. What is Expii's seven-digit telephone number? (Excluding the area code.)

[Answer: 314-1593; in case you forget to round, you get their FAX number!]

#### 8. PI COINCIDENCE

iStock

The number pi is defined to be the ratio circumference/diameter for any circle. We also all know that the area of a circle is pir^2. Is it a sheer coincidence that they are both the same pi, even though one concerns the circumference and one concerns the area? No!

Let's do it for a regular pentagon. It turns out that for the appropriate definition of the "diameter" of a regular pentagon, if we define the number theta to be the ratio of the perimeter/diameter of any regular pentagon, then its area is always thetar^2, where r is half of the diameter. For this to be true, what should be the "diameter" of a regular pentagon?

A) The distance between the farthest corners of the pentagon.
B) The diameter of the largest circle that fits inside the pentagon.
C) The diameter of the smallest circle that fits around the pentagon.
D) The distance from the base to the opposite corner of the pentagon.
E) Other, not easy to describe.
F) It's a trick question.

#### 9. WHAT'S IN A NAME?

iStock

"Expii" brings to mind a number of nice words like "experience," "explore," "explain," "expand," "express," and more. The truth behind the name, however, is based on the most beautiful equation in mathematics:

e^pii + 1 = 0

What is (-1)^-i/pi?

[Answer: Euler's number, also known as e, or 2.718 (rounded off)]

#### GETTING EXCITED FOR PI DAY

iStock

The Mathematical Association of America was founded in 1915 to promote and celebrate all things mathematical. It has thousands of members, including mathematicians, math educators, and math enthusiasts, and of course they always celebrate Pi Day. The first two problems are by Lafayette College professor Gary Gordon, while the following four have been sprung on the 300,000+ middle and high school students who participate in the association's annual American Mathematics Competitions. Top scorers in these competitions will sometimes go on to compete on the MAA-sponsored Team USA at the IMO.

#### 10. FLIPPING A COIN

iStock

Alice and Bob each have a coin. Suppose Alice flips hers 1000 times, and Bob flips his 999 times. What is the probability that the number of heads Alice flips will be greater than the number Bob flips?

[Answer: 50 percent. Alice must have either more heads or more tails than Bob (since she has one additional flip), but not both. These two possibilities are symmetric, so each has a 50 percent probability.]

#### 11. CUTTING CHEESE

iStock

You are given a cube of cheese (or tofu, for our vegan readers) and a sharp knife. What is the largest number of pieces one may decompose the cube using n straight cuts? You may not rearrange the pieces between cuts!

[Answer: ((n^3)+5n+6)/6). The trick is that the sequence starts 1, 2, 4, 8, 15, so stopping before the fourth cut will give the wrong impression.]

iStock

Ralph went to the store and bought 12 pairs of socks for a total of \$24. Some of the socks he bought cost \$1 a pair, some \$3 a pair, and some \$4 a pair. If he bought at least one pair of each kind, how many pairs of \$1 socks did Ralph buy?

A) 4
B) 5
C) 6
D) 7
E) 8

#### 13. THE COLOR OF MARBLES

iStock

In a bag of marbles, 3/5 of the marbles are blue, and the rest are red. If the number of red marbles is doubled, and the number of blue marbles stays the same, what fraction of the marbles will be red?

A) 2/5
B) 3/7
C) 4/7
D) 3/5
E) 4/5

#### 14. SODA CANS

iStock

If one can holds 12 fluid ounces of soda, what's the minimum number of cans required to provide a gallon (128 ounces) of soda?

[Answer: 11 (you can't have a fraction of a can)]

#### 15. CARPET COVERAGE

iStock

How many square yards of carpet are required to cover a rectangular floor that is 12 feet long and 9 feet wide?

A) 12
B) 36
C) 108
D) 324
E) 972