Sign up to find the luminaries lurking in your past

A NYtimes article published today discusses DNA testing as a "family history research tool."

Among the famous whose DNA has been tested is Marie Antoinette, who belonged to maternal Haplogroup H (along with about half of all Europeans).

Katie Couric (maternal Haplogroup K) is genetically linked to a 5,000-year-old iceman whose body was recently discovered in the Alps. And Jesse James? T2, a subgroup of maternal Haplogroup T.

Whether you've mapped your family's taproots or would rather forget them, you've probably had to at least consider those who came before those who came before you—for scholarships, or medical histories, or perhaps to rationalize some quirk or talent. I have to say I've never been that interested in the fame or foibles of my own genetic line backwards; maybe I'm a hopeless solipsist, maybe I'm banking on reincarnation; my lazy historical eye aside, there are a few notables who'd stand out whether I was wrought from their blood or not. Namely, my saloon-operating great-great grandmother who partied & patrolled in Buffalo, NY. And I'd love to be able to regale you with gypsy rock stars who flanked the Vltava River on my mother's side, but the results aren't in yet, so I'm going to hand this one over to you: who is the most fascinating, mysterious, or just plain irreverent person occupying a box seat in your family tree? Or: would you (or have you) shed some blood to find out more about your ancestry?

A Year in Space Changed How Astronaut Scott Kelly's Genes Behaved

After spending 342 consecutive days onboard the International Space Station from 2015 to 2016, astronaut Scott Kelly now holds the record for longest single space mission by an American. But his "One-Year" study with NASA was about more than breaking records: Its purpose was to show how prolonged time in orbit would effect Kelly's genetic makeup compared to that of his identical twin brother on Earth. Now, following recent evaluations of the two men, it appears that Scott Kelly's gene expression was significantly altered by his time in space, reports.

NASA announced the most recent findings from its Twins Study ahead of a more comprehensive paper combining the work of multiple teams of researchers that is slated for later in 2018. Like his brother Scott, Mark is also an astronaut, making the pair the only twin astronauts in history. So when NASA was looking for a way to study the long-term effects of space life, the siblings were a perfect fit.

As Scott was sending tweets and blowing bubbles on the ISS, Mark stayed on Earth to serve as the control. Biological samples taken from both subjects before, during, and after the space flight showed some dramatic differences. According to an investigation conducted by Susan Bailey of Colorado State University, Scott's telomeres, the protective "cap" at the ends of chromosomes that shorten as we age, got longer in space. The telomeres began shrinking back to preflight levels, however, a few days after Scott's return to Earth. Scott was subjected to regular exercise and a restricted diet aboard the ISS, so the new lifestyle may explain the sudden telomere boost.

Other genetic differences stuck around even months after landing. "Although 93 percent of genes' expression returned to normal post-flight, a subset of several hundred 'space genes' were still disrupted after return to Earth," acccording to a NASA press release. About 7 percent of Scott's genes may show longer-term changes, included the genes associated with DNA repair, immune health, bone formation, hypoxia (an oxygen deficiency in the tissues) and hypercapnia (excessive carbon dioxide in the bloodstream).

A long list of factors, like radiation, caloric restriction, and zero gravity, may have contributed to the results. NASA plans to use these findings to develop countermeasures against these effects, which will be essential if the agency plans to send humans to Mars, a journey that could take three times as long as Scott Kelly's ISS mission.


Editor's note: We updated the headline and one line of this story to more accurately reflect the research findings. We apologize for the error. 

More Evidence to Suggest That Your Insomnia Is Genetic

In 2016, a study on mice found that certain sleep traits, like insomnia, have genetic underpinnings. Several studies of human twins have also suggested that insomnia can be an inherited trait. Now, new research published in Molecular Psychiatry not only reinforces that finding, but also suggests that there may be a genetic link between insomnia and some other psychiatric and physical disorders, like depression and type 2 diabetes, as Psych Central alerts us.

Insomnia is particularly prevalent in populations of military veterans. For this study, researchers at VA San Diego Healthcare System analyzed questionnaire responses and blood samples from almost 33,000 new soldiers at the beginning of basic training, along with pre- and post-deployment surveys from nearly 8000 soldiers deployed to Afghanistan starting in early 2012. They conducted genome-wide association tests to determine the heritability of insomnia and links between insomnia and other disorders. The results were adjusted for the presence of major depression (since insomnia is a common symptom of depression).

The genotype data showed that insomnia disorder was highly heritable and pinpointed potential genes that may be involved. The study indicated that there's a strong genetic correlation between insomnia and major depression. (The two were distinct, though, meaning that the insomnia couldn't be totally explained by the depression.) They also found a significant genetic correlation between insomnia and type 2 diabetes.

Because the study relied on data from the U.S. military, the study doesn't have the most far-reaching sample—it was largely male and wasn't as racially diverse as it could have been. (While it analyzed responses from recruits from European, African, and Latino ancestry, there weren't enough Asian-American participants to analyze as a group.) The responses were also self-reported, which isn't always the most accurate data-collection method.

The genes indicated by this study could be used to develop new treatments for insomnia, but future studies will likely need to explore these questions within broader populations.

[h/t Psych Central]


More from mental floss studios