CLOSE
Original image

The not-silent killer: noise pollution

Original image

It was almost like living near the ocean. Inside the apartment, the sound washed over you in an undulating, neverending wave, punctuated by the occasional honking cry of the Skylark or Mustang. At rush hour came the frequent squeal of brakes, and at least once a day, the dull thudding whine of a metal-on-metal meeting. Yes, I'll never forget our first apartment in Hollywood, the double-paned "soundproof" windows of which were only ten feet from the 101 Freeway overpass, where you couldn't see the traffic but you could never stop hearing it, even while you slept.

The other bonus was the view: there was a wide embankment built up against the freeway just outside our never-used "porch," where the residentially-challenged would congregate to catch 40 winks, engage in battle with bottles and sticks (I believe the internet hath dubbed them "bumfights"), and even pursue more amorous objectives 'neath double-wide sleeping bags. As it turned out, it was easy enough to not look out the window -- but the one thing you can't shut off is your ears. It seemed to affect me more profoundly than my wife, who at one point claimed she "hadn't heard the freeway for months" (liar!) and even now prefers to have the television on in the background while reading or writing, which continues to baffle me.

I had to face up to the fact that perhaps I was just more sensitive to sound than she, even though by any objective standard, my hearing is no better. Was there something wrong with me? Why weren't my double-paned windows enough? Well, according to a groundbreaking new study detailed in New Scientist and The Daily Telegraph (I wonder if they still use a telegraph there), noise pollution is a problem for everyone, and not only does it have a "huge impact on health," it may even be responsible for three in every hundred deaths traditionally blamed on heart attack and stroke. Here's why:

Noise is linked with heart attack and stroke because it creates chronic stress that keeps our bodies in a state of constant alert. Research published last year by Germany's Federal Environmental Agency in Berlin shows that even when you are asleep, your ears, brain and body continue to react to sounds, raising levels of stress hormones. However, if these stress hormones are in constant circulation, they can cause long-term physiological changes that could be life-threatening. The end result can be anything from heart failure and strokes to high blood pressure and immune problems.

They go on to estimate that since nearly 7 million people die from heart disease in Europe every year, that equals about 210,000 deaths attributable to noise pollution every year. Furthermore, even if it doesn't kill you, it can have other negative impacts: when schools are built in especially noisy areas, information retention and test scores go down. Chronic exposure to noise can cause tinnitus. And people who haven't slept as well during the night are more likely to have accidents during the day (thereby creating the sort of freeway noises that give other people noise fatigue -- a vicious cycle!)

Since that first infamous apartment in fabulous Hollywood, we've intentionally sought out the quietest parts of LA, and lived in blissful peace for lo these several years. But I'll never forget what it was like to live with constant noise -- and that millions of people (and millions more each year, as our cities grow) still live with it every day. What does your neighborhood sound like?

Original image
iStock // Ekaterina Minaeva
technology
arrow
Man Buys Two Metric Tons of LEGO Bricks; Sorts Them Via Machine Learning
May 21, 2017
Original image
iStock // Ekaterina Minaeva

Jacques Mattheij made a small, but awesome, mistake. He went on eBay one evening and bid on a bunch of bulk LEGO brick auctions, then went to sleep. Upon waking, he discovered that he was the high bidder on many, and was now the proud owner of two tons of LEGO bricks. (This is about 4400 pounds.) He wrote, "[L]esson 1: if you win almost all bids you are bidding too high."

Mattheij had noticed that bulk, unsorted bricks sell for something like €10/kilogram, whereas sets are roughly €40/kg and rare parts go for up to €100/kg. Much of the value of the bricks is in their sorting. If he could reduce the entropy of these bins of unsorted bricks, he could make a tidy profit. While many people do this work by hand, the problem is enormous—just the kind of challenge for a computer. Mattheij writes:

There are 38000+ shapes and there are 100+ possible shades of color (you can roughly tell how old someone is by asking them what lego colors they remember from their youth).

In the following months, Mattheij built a proof-of-concept sorting system using, of course, LEGO. He broke the problem down into a series of sub-problems (including "feeding LEGO reliably from a hopper is surprisingly hard," one of those facts of nature that will stymie even the best system design). After tinkering with the prototype at length, he expanded the system to a surprisingly complex system of conveyer belts (powered by a home treadmill), various pieces of cabinetry, and "copious quantities of crazy glue."

Here's a video showing the current system running at low speed:

The key part of the system was running the bricks past a camera paired with a computer running a neural net-based image classifier. That allows the computer (when sufficiently trained on brick images) to recognize bricks and thus categorize them by color, shape, or other parameters. Remember that as bricks pass by, they can be in any orientation, can be dirty, can even be stuck to other pieces. So having a flexible software system is key to recognizing—in a fraction of a second—what a given brick is, in order to sort it out. When a match is found, a jet of compressed air pops the piece off the conveyer belt and into a waiting bin.

After much experimentation, Mattheij rewrote the software (several times in fact) to accomplish a variety of basic tasks. At its core, the system takes images from a webcam and feeds them to a neural network to do the classification. Of course, the neural net needs to be "trained" by showing it lots of images, and telling it what those images represent. Mattheij's breakthrough was allowing the machine to effectively train itself, with guidance: Running pieces through allows the system to take its own photos, make a guess, and build on that guess. As long as Mattheij corrects the incorrect guesses, he ends up with a decent (and self-reinforcing) corpus of training data. As the machine continues running, it can rack up more training, allowing it to recognize a broad variety of pieces on the fly.

Here's another video, focusing on how the pieces move on conveyer belts (running at slow speed so puny humans can follow). You can also see the air jets in action:

In an email interview, Mattheij told Mental Floss that the system currently sorts LEGO bricks into more than 50 categories. It can also be run in a color-sorting mode to bin the parts across 12 color groups. (Thus at present you'd likely do a two-pass sort on the bricks: once for shape, then a separate pass for color.) He continues to refine the system, with a focus on making its recognition abilities faster. At some point down the line, he plans to make the software portion open source. You're on your own as far as building conveyer belts, bins, and so forth.

Check out Mattheij's writeup in two parts for more information. It starts with an overview of the story, followed up with a deep dive on the software. He's also tweeting about the project (among other things). And if you look around a bit, you'll find bulk LEGO brick auctions online—it's definitely a thing!

Original image
Nick Briggs/Comic Relief
entertainment
arrow
What Happened to Jamie and Aurelia From Love Actually?
May 26, 2017
Original image
Nick Briggs/Comic Relief

Fans of the romantic-comedy Love Actually recently got a bonus reunion in the form of Red Nose Day Actually, a short charity special that gave audiences a peek at where their favorite characters ended up almost 15 years later.

One of the most improbable pairings from the original film was between Jamie (Colin Firth) and Aurelia (Lúcia Moniz), who fell in love despite almost no shared vocabulary. Jamie is English, and Aurelia is Portuguese, and they know just enough of each other’s native tongues for Jamie to propose and Aurelia to accept.

A decade and a half on, they have both improved their knowledge of each other’s languages—if not perfectly, in Jamie’s case. But apparently, their love is much stronger than his grasp on Portuguese grammar, because they’ve got three bilingual kids and another on the way. (And still enjoy having important romantic moments in the car.)

In 2015, Love Actually script editor Emma Freud revealed via Twitter what happened between Karen and Harry (Emma Thompson and Alan Rickman, who passed away last year). Most of the other couples get happy endings in the short—even if Hugh Grant's character hasn't gotten any better at dancing.

[h/t TV Guide]

SECTIONS
BIG QUESTIONS
BIG QUESTIONS
WEATHER WATCH
BE THE CHANGE
JOB SECRETS
QUIZZES
WORLD WAR 1
SMART SHOPPING
STONES, BONES, & WRECKS
#TBT
THE PRESIDENTS
WORDS
RETROBITUARIES