CLOSE
Original image

Tuesday Turnip

Original image

It's time for another whimsical Tuesday Turnip search wherein I type a random phrase and we see what kind of interesting factoids "turn-up."

Today I typed in "largely assumed that" "“ unearthing the following:

  • It is largely assumed that every person's fingerprints are unique, or different from every other person's. The odds against two people having identically matching fingerprints are astronomical. For this reason, fingerprints are one of the best ways to identify people. Other physical characteristics differ from one person to the next, including the voice, iris, retina, handprints, footprints, blood vessels in the wrist, and facial image.
  • In All Grown Up!, set approximately nine years [after Rugrats], Kimi Finster grew up to some extent. Her age is never clearly defined, but it is largely assumed that she is 10 years old.
  • In 1844, John Neely Bryan convinced J. P. Dumas to survey and lay out a 0.5 square miles section of blocks and streets near present downtown [Dallas]. The establishment was named Dallas, and though it is largely assumed that it was named after the then Vice President George Mifflin Dallas, there are at least six theories as to the origin of the name: Named after George Mifflin Dallas; Named after George Mifflin Dallas's brother Alexander James Dallas, a U.S. Navy commodore who was stationed in the Gulf of Mexico; Named after George and sailor Alexander's father, Alexander James Dallas, who was the United States Secretary of the Treasury around the end of the War of 1812; Named in a town-naming contest in 1842; Named after the friend of founder John Neely Bryan's son, who later stated that his father had said he had named the town "after my friend Dallas" (a person whose identity is not certain). Named after Joseph Dallas, who settled near Dallas in 1843[2]
  • Christopher Storrs presents a fresh new appraisal of the reasons for the survival of Spain and its European and overseas empire under the last Spanish Habsburg, Carlos II (1665-1700). Hitherto it has been largely assumed that in the 'Age of Louis XIV' Spain collapsed as a military, naval and imperial power, and only retained its empire because states which had hitherto opposed Spanish hegemony came to Carlos's aid. However, this view seriously underestimates the efforts of Carlos II"¦
  • A mobile robot is one of the simplest types of robot. The ANU mobile robot has wheels at the bottom for driving around, four car batteries for power, two 800MHz Pentium III computers and a large number of sensors, including video cameras, sonar and laser rangefinders. Mobile robotics research at the ANU focuses on the development of a reliable, robust robot that could drive around, automatically build a map and then navigate through an environment using the map. Building and maintaining maps in changing environments are the challenges at present. Previous research has largely assumed that the environment is unmoving and does not change. However, in most real-world applications, there are people moving around and objects, like furniture, are occasionally rearranged.
  • The Nephilim were an antediluvian race (pre-flood) race which are referred to in the Bible as giants. It is largely assumed that Adam and Eve were the only humans created in the beginning, but the Bible does not describe every person on earth, nor even everyone that was important to God.
  • Much of the debate surrounding embryonic stem cells has centered on the ethical and moral questions raised by the use of human embryos in medical research. In contrast to the widely divergent public opinions regarding this research, it is largely assumed that from the perspective of science there is little or no debate on the matter. The scientific merit of stem cell research is most commonly characterized as "indisputable" and the support of the scientific community as "unanimous." Nothing could be further from the truth.

Original image
iStock // Ekaterina Minaeva
arrow
technology
Man Buys Two Metric Tons of LEGO Bricks; Sorts Them Via Machine Learning
Original image
iStock // Ekaterina Minaeva

Jacques Mattheij made a small, but awesome, mistake. He went on eBay one evening and bid on a bunch of bulk LEGO brick auctions, then went to sleep. Upon waking, he discovered that he was the high bidder on many, and was now the proud owner of two tons of LEGO bricks. (This is about 4400 pounds.) He wrote, "[L]esson 1: if you win almost all bids you are bidding too high."

Mattheij had noticed that bulk, unsorted bricks sell for something like €10/kilogram, whereas sets are roughly €40/kg and rare parts go for up to €100/kg. Much of the value of the bricks is in their sorting. If he could reduce the entropy of these bins of unsorted bricks, he could make a tidy profit. While many people do this work by hand, the problem is enormous—just the kind of challenge for a computer. Mattheij writes:

There are 38000+ shapes and there are 100+ possible shades of color (you can roughly tell how old someone is by asking them what lego colors they remember from their youth).

In the following months, Mattheij built a proof-of-concept sorting system using, of course, LEGO. He broke the problem down into a series of sub-problems (including "feeding LEGO reliably from a hopper is surprisingly hard," one of those facts of nature that will stymie even the best system design). After tinkering with the prototype at length, he expanded the system to a surprisingly complex system of conveyer belts (powered by a home treadmill), various pieces of cabinetry, and "copious quantities of crazy glue."

Here's a video showing the current system running at low speed:

The key part of the system was running the bricks past a camera paired with a computer running a neural net-based image classifier. That allows the computer (when sufficiently trained on brick images) to recognize bricks and thus categorize them by color, shape, or other parameters. Remember that as bricks pass by, they can be in any orientation, can be dirty, can even be stuck to other pieces. So having a flexible software system is key to recognizing—in a fraction of a second—what a given brick is, in order to sort it out. When a match is found, a jet of compressed air pops the piece off the conveyer belt and into a waiting bin.

After much experimentation, Mattheij rewrote the software (several times in fact) to accomplish a variety of basic tasks. At its core, the system takes images from a webcam and feeds them to a neural network to do the classification. Of course, the neural net needs to be "trained" by showing it lots of images, and telling it what those images represent. Mattheij's breakthrough was allowing the machine to effectively train itself, with guidance: Running pieces through allows the system to take its own photos, make a guess, and build on that guess. As long as Mattheij corrects the incorrect guesses, he ends up with a decent (and self-reinforcing) corpus of training data. As the machine continues running, it can rack up more training, allowing it to recognize a broad variety of pieces on the fly.

Here's another video, focusing on how the pieces move on conveyer belts (running at slow speed so puny humans can follow). You can also see the air jets in action:

In an email interview, Mattheij told Mental Floss that the system currently sorts LEGO bricks into more than 50 categories. It can also be run in a color-sorting mode to bin the parts across 12 color groups. (Thus at present you'd likely do a two-pass sort on the bricks: once for shape, then a separate pass for color.) He continues to refine the system, with a focus on making its recognition abilities faster. At some point down the line, he plans to make the software portion open source. You're on your own as far as building conveyer belts, bins, and so forth.

Check out Mattheij's writeup in two parts for more information. It starts with an overview of the story, followed up with a deep dive on the software. He's also tweeting about the project (among other things). And if you look around a bit, you'll find bulk LEGO brick auctions online—it's definitely a thing!

Original image
Cs California, Wikimedia Commons // CC BY-SA 3.0
arrow
science
How Experts Say We Should Stop a 'Zombie' Infection: Kill It With Fire
Original image
Cs California, Wikimedia Commons // CC BY-SA 3.0

Scientists are known for being pretty cautious people. But sometimes, even the most careful of us need to burn some things to the ground. Immunologists have proposed a plan to burn large swaths of parkland in an attempt to wipe out disease, as The New York Times reports. They described the problem in the journal Microbiology and Molecular Biology Reviews.

Chronic wasting disease (CWD) is a gruesome infection that’s been destroying deer and elk herds across North America. Like bovine spongiform encephalopathy (BSE, better known as mad cow disease) and Creutzfeldt-Jakob disease, CWD is caused by damaged, contagious little proteins called prions. Although it's been half a century since CWD was first discovered, scientists are still scratching their heads about how it works, how it spreads, and if, like BSE, it could someday infect humans.

Paper co-author Mark Zabel, of the Prion Research Center at Colorado State University, says animals with CWD fade away slowly at first, losing weight and starting to act kind of spacey. But "they’re not hard to pick out at the end stage," he told The New York Times. "They have a vacant stare, they have a stumbling gait, their heads are drooping, their ears are down, you can see thick saliva dripping from their mouths. It’s like a true zombie disease."

CWD has already been spotted in 24 U.S. states. Some herds are already 50 percent infected, and that number is only growing.

Prion illnesses often travel from one infected individual to another, but CWD’s expansion was so rapid that scientists began to suspect it had more than one way of finding new animals to attack.

Sure enough, it did. As it turns out, the CWD prion doesn’t go down with its host-animal ship. Infected animals shed the prion in their urine, feces, and drool. Long after the sick deer has died, others can still contract CWD from the leaves they eat and the grass in which they stand.

As if that’s not bad enough, CWD has another trick up its sleeve: spontaneous generation. That is, it doesn’t take much damage to twist a healthy prion into a zombifying pathogen. The illness just pops up.

There are some treatments, including immersing infected tissue in an ozone bath. But that won't help when the problem is literally smeared across the landscape. "You cannot treat half of the continental United States with ozone," Zabel said.

And so, to combat this many-pronged assault on our wildlife, Zabel and his colleagues are getting aggressive. They recommend a controlled burn of infected areas of national parks in Colorado and Arkansas—a pilot study to determine if fire will be enough.

"If you eliminate the plants that have prions on the surface, that would be a huge step forward," he said. "I really don’t think it’s that crazy."

[h/t The New York Times]

SECTIONS
BIG QUESTIONS
arrow
BIG QUESTIONS
SECTIONS
WEATHER WATCH
BE THE CHANGE
JOB SECRETS
QUIZZES
WORLD WAR 1
SMART SHOPPING
STONES, BONES, & WRECKS
#TBT
THE PRESIDENTS
WORDS
RETROBITUARIES