CLOSE
Original image

I'm gonna wash that sin right outta my hair

Original image

It turns out that dirty deeds really are -- people who feel like they've done something unethical feel the need to bathe more often, according to new research in Science:

Liljenquist and her colleague Chen-Bo Zhong at the University of Toronto in Canada first asked undergraduate student volunteers to focus on ethical or unethical deeds from their past. The volunteers were more likely to interpret the word fragments "W _ _ H" as "wash" and "S _ _ P" as "soap" if they had been thinking of an unethical deed, and to choose an antiseptic wipe instead of a pencil as free gift.

The investigators also asked volunteers to hand-copy a short story written in the first person about either helping or sabotaging a coworker. Zhong and Liljenquist found the students who copied the unethical story were more likely to then rate cleansing products such as toothpaste and detergent as more desirable than noncleansing products such as batteries and candy bars in what the participants thought was an unrelated marketing study.

In their last set of experiments, the researchers asked volunteers to first remember an unethical deed and then either gave them the chance to wash their hands or not. When the students were afterward asked whether they would volunteer without pay for another research study to help out a desperate graduate student, 74 percent of those who had not washed their hands offered to help, while only 41 percent of the participants who had a chance to wash their hands did. This suggested volunteers who did not get the chance to clean themselves felt a need "to absolve their consciences," Liljenquist said.

This "Macbeth effect" suggests that the areas of the brain that process moral disgust and physical disgust overlap. I guess it also explains the whole baptism thing. ... Now, if you'll excuse me, I'm gonna go hop in the shower.

What?

via Idle Musings

Original image
iStock // Ekaterina Minaeva
technology
arrow
Man Buys Two Metric Tons of LEGO Bricks; Sorts Them Via Machine Learning
May 21, 2017
Original image
iStock // Ekaterina Minaeva

Jacques Mattheij made a small, but awesome, mistake. He went on eBay one evening and bid on a bunch of bulk LEGO brick auctions, then went to sleep. Upon waking, he discovered that he was the high bidder on many, and was now the proud owner of two tons of LEGO bricks. (This is about 4400 pounds.) He wrote, "[L]esson 1: if you win almost all bids you are bidding too high."

Mattheij had noticed that bulk, unsorted bricks sell for something like €10/kilogram, whereas sets are roughly €40/kg and rare parts go for up to €100/kg. Much of the value of the bricks is in their sorting. If he could reduce the entropy of these bins of unsorted bricks, he could make a tidy profit. While many people do this work by hand, the problem is enormous—just the kind of challenge for a computer. Mattheij writes:

There are 38000+ shapes and there are 100+ possible shades of color (you can roughly tell how old someone is by asking them what lego colors they remember from their youth).

In the following months, Mattheij built a proof-of-concept sorting system using, of course, LEGO. He broke the problem down into a series of sub-problems (including "feeding LEGO reliably from a hopper is surprisingly hard," one of those facts of nature that will stymie even the best system design). After tinkering with the prototype at length, he expanded the system to a surprisingly complex system of conveyer belts (powered by a home treadmill), various pieces of cabinetry, and "copious quantities of crazy glue."

Here's a video showing the current system running at low speed:

The key part of the system was running the bricks past a camera paired with a computer running a neural net-based image classifier. That allows the computer (when sufficiently trained on brick images) to recognize bricks and thus categorize them by color, shape, or other parameters. Remember that as bricks pass by, they can be in any orientation, can be dirty, can even be stuck to other pieces. So having a flexible software system is key to recognizing—in a fraction of a second—what a given brick is, in order to sort it out. When a match is found, a jet of compressed air pops the piece off the conveyer belt and into a waiting bin.

After much experimentation, Mattheij rewrote the software (several times in fact) to accomplish a variety of basic tasks. At its core, the system takes images from a webcam and feeds them to a neural network to do the classification. Of course, the neural net needs to be "trained" by showing it lots of images, and telling it what those images represent. Mattheij's breakthrough was allowing the machine to effectively train itself, with guidance: Running pieces through allows the system to take its own photos, make a guess, and build on that guess. As long as Mattheij corrects the incorrect guesses, he ends up with a decent (and self-reinforcing) corpus of training data. As the machine continues running, it can rack up more training, allowing it to recognize a broad variety of pieces on the fly.

Here's another video, focusing on how the pieces move on conveyer belts (running at slow speed so puny humans can follow). You can also see the air jets in action:

In an email interview, Mattheij told Mental Floss that the system currently sorts LEGO bricks into more than 50 categories. It can also be run in a color-sorting mode to bin the parts across 12 color groups. (Thus at present you'd likely do a two-pass sort on the bricks: once for shape, then a separate pass for color.) He continues to refine the system, with a focus on making its recognition abilities faster. At some point down the line, he plans to make the software portion open source. You're on your own as far as building conveyer belts, bins, and so forth.

Check out Mattheij's writeup in two parts for more information. It starts with an overview of the story, followed up with a deep dive on the software. He's also tweeting about the project (among other things). And if you look around a bit, you'll find bulk LEGO brick auctions online—it's definitely a thing!

Original image
Opening Ceremony
fun
arrow
These $425 Jeans Can Turn Into Jorts
May 19, 2017
Original image
Opening Ceremony

Modular clothing used to consist of something simple, like a reversible jacket. Today, it’s a $425 pair of detachable jeans.

Apparel retailer Opening Ceremony recently debuted a pair of “2 in 1 Y/Project” trousers that look fairly peculiar. The legs are held to the crotch by a pair of loops, creating a disjointed C-3PO effect. Undo the loops and you can now remove the legs entirely, leaving a pair of jean shorts in their wake. The result goes from this:

501069-OpeningCeremony2.jpg

Opening Ceremony

To this:

501069-OpeningCeremony3.jpg

Opening Ceremony

The company also offers a slightly different cut with button tabs in black for $460. If these aren’t audacious enough for you, the Y/Project line includes jumpsuits with removable legs and garter-equipped jeans.

[h/t Mashable]

SECTIONS
BIG QUESTIONS
BIG QUESTIONS
JOB SECRETS
QUIZZES
WORLD WAR 1
SMART SHOPPING
STONES, BONES, & WRECKS
#TBT
THE PRESIDENTS
WORDS
RETROBITUARIES