Why Do You Hate the Sound of Your Own Voice?

iStock / SIphotography
iStock / SIphotography

Reader Christah wrote to ask, “Why do our voices sound different to us than they do to other people/on recordings?” And Jenny asked on Facebook, "Why do we hate the sound of our own voice?"

For many of us, there are few things more painful than hearing a recording of our own voices. They don’t sound like we think they should. They’re tinnier, higher and just not right. The tape (or mp3) doesn’t lie, though, and the way we think we sound isn’t how we really sound to everyone else. This is a cruel trick that happens because of the ways that sounds can travel to our inner ear.

Every sound we hear—birds chirping, bees buzzing, people talking, and recordings—is a wave of pressure moving through the air. Our outer ears “catch” these waves and funnel them into our head through the ear canal. They strike the ear drum, which starts vibrating, and those vibrations travel to the inner ear, where they’re translated into signals that can be sent via the auditory nerve to the brain for interpretation.

Good Vibrations

The inner ear doesn’t get stimulated only by external sound waves coming down the ear canal, though. It also picks up on vibrations happening inside the body, and it's a combination of these two things that makes up the sound you hear when you talk.

When you speak, vibrations from your vocal cords resonate in your throat and mouth, and some get transmitted and conducted by the bones in your neck and head. The inner ear responds to these just like any other vibrations, turning them into electrical signals and sending them to the brain. Whenever you speak, your inner ear is stimulated both by internal vibrations in your bones and by the sound coming out of your mouth and traveling through the air and into the ears.

This combination of vibrations coming to the inner ear by two different paths gives your voice (as you normally hear it) a unique character that other, “air only” sounds don’t have. In particular, your bones enhance deeper, lower-frequency vibrations and give your voice a fuller, bassier quality that’s lacking when you hear it on a recording.

This story originally appeared in 2012.

Why Are Barns Often Painted Red?

iStock/Ron and Patty Thomas
iStock/Ron and Patty Thomas

Beginning with the earliest American settlements and continuing into the 18th century, most barns weren't painted at all. Early American barn builders took sun exposure, temperature, moisture, wind, and water drainage patterns into account when placing and building barns, and they seasoned the wood (that is, they reduced the moisture content) accordingly. The right type of wood in the right environment held up fine without any paint.

Toward the end of the 1700s, these old-school methods of barn planning and building fell by the wayside. People sought a quicker, easier fix for preserving their barns—a way to coat and seal the wood to protect it from sunlight and moisture damage. Farmers began making their own coating from a mix of linseed oil (a tawny oil derived from the flax seeds), milk, and lime. It dried quickly and lasted a long time, but it didn't really protect the wood from mold and wasn't quite like the "barn red"we know today—it was more of a burnt orange, really.

Turning Red

The problem with mold is that it decays wood and, in large quantities, can pose health risks to people and animals. Rust, it turns out, kills mold and other types of fungi, so farmers began adding ferrous oxide (rusted iron) to the linseed oil mix. A little bit of rust went a long way in protecting the wood, and it gave the barn a nice red hue.

By the late 19th century, mass-produced paints made with chemical pigments became available to most people. Red was the least expensive color, so it remained the most popular for use on barns, except for a brief period when whitewash became cheaper and white barns started popping up. (White barns were also common on dairy farms in some parts of Pennsylvania, central Maryland, and the Shenandoah Valley, possibly because of the color's association with cleanliness and purity.)

Throughout Appalachia (a historically poorer region), many barns went unpainted for lack of money. In the tobacco regions of Kentucky and North Carolina, black and brown barns were the norm, since the dark colors helped heat the barn and cure tobacco.

Today, many barns are still painted the color traditionally used in a given region, with red still dominating the Northeast and Midwest.

Have you got a Big Question you'd like us to answer? If so, send it to bigquestions@mentalfloss.com.

This story was updated in 2019.

Is There An International Standard Governing Scientific Naming Conventions?

iStock/Grafissimo
iStock/Grafissimo

Jelle Zijlstra:

There are lots of different systems of scientific names with different conventions or rules governing them: chemicals, genes, stars, archeological cultures, and so on. But the one I'm familiar with is the naming system for animals.

The modern naming system for animals derives from the works of the 18th-century Swedish naturalist Carl von Linné (Latinized to Carolus Linnaeus). Linnaeus introduced the system of binominal nomenclature, where animals have names composed of two parts, like Homo sapiens. Linnaeus wrote in Latin and most his names were of Latin origin, although a few were derived from Greek, like Rhinoceros for rhinos, or from other languages, like Sus babyrussa for the babirusa (from Malay).

Other people also started using Linnaeus's system, and a system of rules was developed and eventually codified into what is now called the International Code of Zoological Nomenclature (ICZN). In this case, therefore, there is indeed an international standard governing naming conventions. However, it does not put very strict requirements on the derivation of names: they are merely required to be in the Latin alphabet.

In practice a lot of well-known scientific names are derived from Greek. This is especially true for genus names: Tyrannosaurus, Macropus (kangaroos), Drosophila (fruit flies), Caenorhabditis (nematode worms), Peromyscus (deermice), and so on. Species names are more likely to be derived from Latin (e.g., T. rex, C. elegans, P. maniculatus, but Drosophila melanogaster is Greek again).

One interesting pattern I've noticed in mammals is that even when Linnaeus named the first genus in a group by a Latin name, usually most later names for related genera use Greek roots instead. For example, Linnaeus gave the name Mus to mice, and that is still the genus name for the house mouse, but most related genera use compounds of the Greek-derived root -mys (from μῦς), which also means "mouse." Similarly, bats for Linnaeus were Vespertilio, but there are many more compounds of the Greek root -nycteris (νυκτερίς); pigs are Sus, but compounds usually use Greek -choerus (χοῖρος) or -hys/-hyus (ὗς); weasels are Mustela but compounds usually use -gale or -galea (γαλέη); horses are Equus but compounds use -hippus (ἵππος).

This post originally appeared on Quora. Click here to view.

SECTIONS

arrow
LIVE SMARTER