CLOSE

The Nazis Were on to Continental Drift Before Everyone Else

Wikimedia Commons

“The dream of a great poet.”

“A fairy tale.”

“Delirious ravings.”

“Moving crust disease and wandering pole plague.”

“Germanic pseudoscience.”

In the early 20th century, all these terms—and dozens of other equally colorful ones—were hurled at an emerging scientific idea that we’ve since come to accept as irrefutable and treat as common knowledge.

You may know it as the science of plate tectonics, the explanation of the mechanics of how the puzzle pieces that make up the earth’s surface move around and came to settle (somewhat) into the position they’re in today. In its infancy, though, the idea was known as continental drift, or continental displacement, and was widely regarded by geologists as BS.

Catch My Drift?

Continental drift was proposed by German scientist Alfred Wegener, an untenured and unsalaried lecturer at the University of Marburg. Geology was not his field—he specialized in meteorology and astronomy—but after he became fascinated with the apparent matching coastlines of the various continents while browsing through an atlas, he threw disciplinary boundaries to the wind and pursued his idea. What he proposed was that the continents had once all been joined together in a larger landmass he dubbed the Urkontinent, and was later called  Pangaea (from the Greek pan- (“all”) and gaia (“earth”). At some point in time, the seams running along the supercontinent became unraveled and Pangaea broke into smaller pieces, which drifted, slowly but surely, into their current positions. As evidence, he pointed to live and fossil plants and animals on opposite sides of oceans that were the same or very similar, and geological formations that abruptly ended at the edge of one continent and picked up again on another’s shores.

Wegener first presented his theory of continental drift in a lecture to Frankfurt’s Geological Association in 1912, then in a journal article months later, and finally in a book published shortly after he returned from service in World War I. None of this received very much attention until the book was published in English, at which point Wegener was ridiculed by scientists in Britain, the United States, and even his own country. They poked holes in his evidence and his methods, picked at his credentials, and blasted him for not providing a plausible mechanism powerful enough to actually move the continents.

Wegener worked through the assault, addressing valid criticisms with additional evidence, correcting mistakes, and hypothesizing six different mechanisms for the continents’ drift in new editions of his work. Sadly, he died in 1930 on an expedition to Greenland, decades before his theory began to see widespread acceptance with the discovery of seafloor spreading, Wadati-Benioff zones, and other supporting data and evidence.

Friends in Weird Places

Not all the early reactions to continental drift were harsh, though. In the bizarre intellectual atmosphere of the Third Reich, Wegener’s theory had support and approval from an unlikely champion: the Nazi propaganda machine.

While Nazi science is largely remembered today for its more outrageous ideas and experiments, both real and apocryphal—flying saucers, secret Antarctic bases, talking dogs, supersoldiers, ancient Aryan ruins, and more—the Nazis did come down on the right side of continental drifting before most other geologists did.

Under the Nazis, Deutscher Verlag of Berlin published a bimonthly propaganda magazine called Signal. It was distributed throughout Germany, its allied nations and German-occupied areas in more than 20 languages.  It featured war reports, essays on national socialist policies, German technology innovations, and drawings and photographs, all meant to praise the German government and its allies.

The first issue of 1941, mostly devoted to the German invasion of the Soviet Union, contained a peculiar piece of popular science writing: a two-page article on continental drift. In the piece, titled “And Yet They Do Move,” writer K. von Philippoff defended Wegener’s ideas, citing then-new data that showed an increasing distance between the American and European continents (and replicating one of Wegener’s own mistakes by placing too much emphasis on longitudinal measurements that were not accurate enough at the time to really demonstrate his conclusions) and reminding readers of Wegener’s other evidence, like the scattered flora and fauna and the fit of various continental coastlines. He concluded that continental drift provided a plausible and satisfactory answer to many geological and biological questions that couldn’t otherwise be explained and that “no mistake was possible” about the validity of Wegener’s theory.

While continental drift had a few supporters scattered here and there (like British geologist Arthur Holmes, whose own model of the mechanism for the movement of continents featured an early consideration of seafloor spreading), von Philippoff’s article is notable in that its presence in an official German propaganda magazine, reflecting the views of the government, implies approval and support by at least some members of the Nazi higher-ups. For all the horror and suffering they unleashed upon the world, history’s greatest villains were at least far ahead of their time in the field of geology.

nextArticle.image_alt|e
John Phillips, Getty Images for Tourism Australia
arrow
Animals
New Plankton Species Named After Sir David Attenborough Series Blue Planet
John Phillips, Getty Images for Tourism Australia
John Phillips, Getty Images for Tourism Australia

At least 19 creatures, both living and extinct, have been named after iconic British naturalist Sir David Attenborough. Now, for the first time, one of his documentary series will receive the same honor. As the BBC reports, a newly discovered phytoplankton shares its name with the award-winning BBC series Blue Planet.

The second half of the species' name, Syracosphaera azureaplaneta, is Latin for "blue planet," likely making it the first creature to derive its name from a television program. The single-cell organisms are just thousandths of a millimeter wide, thinner than a human hair, but their massive blooms on the ocean's surface can be seen from space. Called coccolithophores, the plankton serve as a food source for various marine life and are a vital marker scientists use to gauge the effects of climate change on the sea. The plankton's discovery, by researchers at University College London (UCL) and institutions in Spain and Japan, is detailed in a paper [PDF] published in the Journal of Nannoplankton Research.

"They are an essential element in the whole cycle of oxygen production and carbon dioxide and all the rest of it, and you mess about with this sort of thing, and the echoes and the reverberations and the consequences extend throughout the atmosphere," Attenborough said while accepting the honor at UCL.

The Blue Planet premiered in 2001 with eight episodes, each dedicated to a different part of the world's oceans. The series' success inspired a sequel series, Blue Planet II, that debuted on the BBC last year.

[h/t BBC]

nextArticle.image_alt|e
iStock
arrow
science
5 Ways You Do Complex Math in Your Head Without Realizing It
iStock
iStock

The one thing that people who love math and people who hate math tend to agree on is this: You're only really doing math if you sit down and write formal equations. This idea is so widely embraced that to suggest otherwise is "to start a fight," says Maria Droujkova, math educator and founder of Natural Math, a site for kids and parents who want to incorporate math into their daily lives. Mathematicians cherish their formal proofs, considering them the best expression of their profession, while the anti-math don't believe that much of the math they studied in school applies to "real life."

But in reality, "we do an awful lot of things in our daily lives that are profoundly mathematical, but that may not look that way on the surface," Christopher Danielson, a Minnesota-based math educator and author of a number of books, including Common Core Math for Parents for Dummies, tells Mental Floss. Our mathematical thinking includes not just algebra or geometry, but trigonometry, calculus, probability, statistics, and any of the at least 60 types [PDF] of math out there. Here are five examples.

1. COOKING // ALGEBRA

Of all the maths, algebra seems to draw the most ire, with some people even writing entire books on why college students shouldn't have to endure it because, they claim, it holds the students back from graduating. But if you cook, you're likely doing algebra. When preparing a meal, you often have to think proportionally, and "reasoning with proportions is one of the cornerstones of algebraic thinking," Droujkova tells Mental Floss.

You're also thinking algebraically whenever you're adjusting a recipe, whether for a larger crowd or because you have to substitute or reduce ingredients. Say, for example, you want to make pancakes, but you only have two eggs left and the recipe calls for three. How much flour should you use when the original recipe calls for one cup? Since one cup is 8 ounces, you can figure this out using the following algebra equation: n/8 : 2/3.

algebraic equation illustrates adjustment of a recipe
Lucy Quintanilla

However, when thinking proportionally, you can just reason that since you have one-third less eggs, you should just use one-third less flour.

You're also doing that proportional thinking when you consider the cooking times of the various courses of your meal and plan accordingly so all the elements of your dinner are ready at the same time. For example, it will usually take three times as long to cook rice as it will a flattened chicken breast, so starting the rice first makes sense.

"People do mathematics in their own way," Droujkova says, "even if they cannot do it in a very formalized way."

2. LISTENING TO MUSIC // PATTERN THEORY AND SYMMETRY

woman enjoys listening to music in headphones
iStock

The making of music involves many different types of math, from algebra and geometry to group theory and pattern theory and beyond, and a number of mathematicians (including Pythagoras and Galileo) and musicians have connected the two disciplines (Stravinsky claimed that music is "something like mathematical thinking").

But simply listening to music can make you think mathematically too. When you recognize a piece of music, you are identifying a pattern of sound. Patterns are a fundamental part of math; the branch known as pattern theory is applied to everything from statistics to machine learning.

Danielson, who teaches kids about patterns in his math classes, says figuring out the structure of a pattern is vital for understanding math at higher levels, so music is a great gateway: "If you're thinking about how two songs have similar beats, or time signatures, or you're creating harmonies, you're working on the structure of a pattern and doing some really important mathematical thinking along the way."

So maybe you weren't doing math on paper if you were debating with your friends about whether Tom Petty was right to sue Sam Smith in 2015 over "Stay With Me" sounding a lot like "I Won't Back Down," but you were still thinking mathematically when you compared the songs. And that earworm you can't get out of your head? It follows a pattern: intro, verse, chorus, bridge, end.

When you recognize these kinds of patterns, you're also recognizing symmetry (which in a pop song tends to involve the chorus and the hook, because both repeat). Symmetry [PDF] is the focus of group theory, but it's also key to geometry, algebra, and many other maths.

3. KNITTING AND CROCHETING // GEOMETRIC THINKING

six steps of crocheting a hyperbolic plane
Cheryl, Flickr // CC BY-SA 2.0

Droujkova, an avid crocheter, she says she is often intrigued by the very mathematical discussions fellow crafters have online about the best patterns for their projects, even if they will often insist they are awful at math or uninterested in it. And yet, such crafts cannot be done without geometric thinking: When you knit or crochet a hat, you're creating a half sphere, which follows a geometric formula.

Droujkova isn't the only math lover who has made the connection between geometry and crocheting. Cornell mathematician Daina Taimina found crocheting to be the perfect way to illustrate the geometry of a hyperbolic plane, or a surface that has a constant negative curvature, like a lettuce leaf. Hyperbolic geometry is also used in navigation apps, and explains why flat maps distort the size of landforms, making Greenland, for example, look far larger on most maps than it actually is.

4. PLAYING POOL // TRIGONOMETRY

people playing pool
iStock

If you play billiards, pool, or snooker, it's very likely that you are using trigonometric reasoning. Sinking a ball into a pocket by using another ball involves understanding not just how to measure angles by sight but triangulation, which is the cornerstone of trigonometry. (Triangulation is a surprisingly accurate way to measure distance. Long before powered flight was possible, surveyors used triangulation to measure the heights of mountains from their bases and were off by only a matter of feet.)

In a 2010 paper [PDF], Louisiana mathematician Rick Mabry studied the trigonometry (and basic calculus) of pool, focusing on the straight-in shot. In a bar in Shreveport, Louisiana, he scribbled equations on napkins for each shot, and he calculated the most difficult straight-in shot of all. Most experienced pool players would say it’s one where the target ball is halfway between the pocket and the cue ball. But that, according to Mabry’s equations, turned out not to be true. The hardest shot of all had a surprising feature: The distance from the cue ball to the pocket was exactly 1.618 times the distance from the target ball to the pocket. That number is the golden ratio, which is found everywhere in nature—and, apparently, on pool tables.

Do you need to consider the golden ratio when deciding where to place the cue ball? Nope, unless you want to prove a point, or set someone else up to lose. You're doing the trig automatically. The pool sharks at the bar must have known this, because someone threw away Mabry's math napkins.

5. RE-TILING THE BATHROOM // CALCULUS

tiled bathroom with shower stall
iStock

Many students don't get to calculus in high school, or even in college, but a cornerstone of that branch of math is optimization—or figuring out how to get the most precise use of a space or chunk of time.

Consider a home improvement project where you're confronted with tiling around something whose shape doesn't fit a geometric formula like a circle or rectangle, such as the asymmetric base of a toilet or freestanding sink. This is where the fundamental theorem of calculus—which can be used to calculate the precise area of an irregular object—comes in handy. When thinking about how those tiles will best fit around the curve of that sink or toilet, and how much of each tile needs to be cut off or added, you're employing the kind of reasoning done in a Riemann sum.

Riemann sums (named after a 19th-century German mathematician) are crucial to explaining integration in calculus, as tangible introductions to the more precise fundamental theorem. A graph of a Riemann sum shows how the area of a curve can be found by building rectangles along the x, or horizontal axis, first up to the curve, and then over it, and then averaging the distance between the over- and underlap to get a more precise measurement. 

SECTIONS

arrow
LIVE SMARTER
More from mental floss studios