CLOSE

The Nazis Were on to Continental Drift Before Everyone Else

Wikimedia Commons

“The dream of a great poet.”

“A fairy tale.”

“Delirious ravings.”

“Moving crust disease and wandering pole plague.”

“Germanic pseudoscience.”

In the early 20th century, all these terms—and dozens of other equally colorful ones—were hurled at an emerging scientific idea that we’ve since come to accept as irrefutable and treat as common knowledge.

You may know it as the science of plate tectonics, the explanation of the mechanics of how the puzzle pieces that make up the earth’s surface move around and came to settle (somewhat) into the position they’re in today. In its infancy, though, the idea was known as continental drift, or continental displacement, and was widely regarded by geologists as BS.

Catch My Drift?

Continental drift was proposed by German scientist Alfred Wegener, an untenured and unsalaried lecturer at the University of Marburg. Geology was not his field—he specialized in meteorology and astronomy—but after he became fascinated with the apparent matching coastlines of the various continents while browsing through an atlas, he threw disciplinary boundaries to the wind and pursued his idea. What he proposed was that the continents had once all been joined together in a larger landmass he dubbed the Urkontinent, and was later called  Pangaea (from the Greek pan- (“all”) and gaia (“earth”). At some point in time, the seams running along the supercontinent became unraveled and Pangaea broke into smaller pieces, which drifted, slowly but surely, into their current positions. As evidence, he pointed to live and fossil plants and animals on opposite sides of oceans that were the same or very similar, and geological formations that abruptly ended at the edge of one continent and picked up again on another’s shores.

Wegener first presented his theory of continental drift in a lecture to Frankfurt’s Geological Association in 1912, then in a journal article months later, and finally in a book published shortly after he returned from service in World War I. None of this received very much attention until the book was published in English, at which point Wegener was ridiculed by scientists in Britain, the United States, and even his own country. They poked holes in his evidence and his methods, picked at his credentials, and blasted him for not providing a plausible mechanism powerful enough to actually move the continents.

Wegener worked through the assault, addressing valid criticisms with additional evidence, correcting mistakes, and hypothesizing six different mechanisms for the continents’ drift in new editions of his work. Sadly, he died in 1930 on an expedition to Greenland, decades before his theory began to see widespread acceptance with the discovery of seafloor spreading, Wadati-Benioff zones, and other supporting data and evidence.

Friends in Weird Places

Not all the early reactions to continental drift were harsh, though. In the bizarre intellectual atmosphere of the Third Reich, Wegener’s theory had support and approval from an unlikely champion: the Nazi propaganda machine.

While Nazi science is largely remembered today for its more outrageous ideas and experiments, both real and apocryphal—flying saucers, secret Antarctic bases, talking dogs, supersoldiers, ancient Aryan ruins, and more—the Nazis did come down on the right side of continental drifting before most other geologists did.

Under the Nazis, Deutscher Verlag of Berlin published a bimonthly propaganda magazine called Signal. It was distributed throughout Germany, its allied nations and German-occupied areas in more than 20 languages.  It featured war reports, essays on national socialist policies, German technology innovations, and drawings and photographs, all meant to praise the German government and its allies.

The first issue of 1941, mostly devoted to the German invasion of the Soviet Union, contained a peculiar piece of popular science writing: a two-page article on continental drift. In the piece, titled “And Yet They Do Move,” writer K. von Philippoff defended Wegener’s ideas, citing then-new data that showed an increasing distance between the American and European continents (and replicating one of Wegener’s own mistakes by placing too much emphasis on longitudinal measurements that were not accurate enough at the time to really demonstrate his conclusions) and reminding readers of Wegener’s other evidence, like the scattered flora and fauna and the fit of various continental coastlines. He concluded that continental drift provided a plausible and satisfactory answer to many geological and biological questions that couldn’t otherwise be explained and that “no mistake was possible” about the validity of Wegener’s theory.

While continental drift had a few supporters scattered here and there (like British geologist Arthur Holmes, whose own model of the mechanism for the movement of continents featured an early consideration of seafloor spreading), von Philippoff’s article is notable in that its presence in an official German propaganda magazine, reflecting the views of the government, implies approval and support by at least some members of the Nazi higher-ups. For all the horror and suffering they unleashed upon the world, history’s greatest villains were at least far ahead of their time in the field of geology.

nextArticle.image_alt|e
Penn Vet Working Dog Center
arrow
Stones, Bones, and Wrecks
New Program Trains Dogs to Sniff Out Art Smugglers
Penn Vet Working Dog Center
Penn Vet Working Dog Center

Soon, the dogs you see sniffing out contraband at airports may not be searching for drugs or smuggled Spanish ham. They might be looking for stolen treasures.

K-9 Artifact Finders, a new collaboration between New Hampshire-based cultural heritage law firm Red Arch and the University of Pennsylvania, is training dogs to root out stolen antiquities looted from archaeological sites and museums. The dogs would be stopping them at borders before the items can be sold elsewhere on the black market.

The illegal antiquities trade nets more than $3 billion per year around the world, and trafficking hits countries dealing with ongoing conflict, like Syria and Iraq today, particularly hard. By one estimate, around half a million artifacts were stolen from museums and archaeological sites throughout Iraq between 2003 and 2005 alone. (Famously, the craft-supply chain Hobby Lobby was fined $3 million in 2017 for buying thousands of ancient artifacts looted from Iraq.) In Syria, the Islamic State has been known to loot and sell ancient artifacts including statues, jewelry, and art to fund its operations.

But the problem spans across the world. Between 2007 and 2016, U.S. Customs and Border Control discovered more than 7800 cultural artifacts in the U.S. looted from 30 different countries.

A yellow Lab sniffs a metal cage designed to train dogs on scent detection.
Penn Vet Working Dog Center

K-9 Artifact Finders is the brainchild of Rick St. Hilaire, the executive director of Red Arch. His non-profit firm researches cultural heritage property law and preservation policy, including studying archaeological site looting and antiquities trafficking. Back in 2015, St. Hilaire was reading an article about a working dog trained to sniff out electronics that was able to find USB drives, SD cards, and other data storage devices. He wondered, if dogs could be trained to identify the scents of inorganic materials that make up electronics, could they be trained to sniff out ancient pottery?

To find out, St. Hilaire tells Mental Floss, he contacted the Penn Vet Working Dog Center, a research and training center for detection dogs. In December 2017, Red Arch, the Working Dog Center, and the Penn Museum (which is providing the artifacts to train the dogs) launched K-9 Artifact Finders, and in late January 2018, the five dogs selected for the project began their training, starting with learning the distinct smell of ancient pottery.

“Our theory is, it is a porous material that’s going to have a lot more odor than, say, a metal,” says Cindy Otto, the executive director of the Penn Vet Working Dog Center and the project’s principal investigator.

As you might imagine, museum curators may not be keen on exposing fragile ancient materials to four Labrador retrievers and a German shepherd, and the Working Dog Center didn’t want to take any risks with the Penn Museum’s priceless artifacts. So instead of letting the dogs have free rein to sniff the materials themselves, the project is using cotton balls. The researchers seal the artifacts (broken shards of Syrian pottery) in airtight bags with a cotton ball for 72 hours, then ask the dogs to find the cotton balls in the lab. They’re being trained to disregard the smell of the cotton ball itself, the smell of the bag it was stored in, and ideally, the smell of modern-day pottery, eventually being able to zero in on the smell that distinguishes ancient pottery specifically.

A dog looks out over the metal "pinhweel" training mechanism.
Penn Vet Working Dog Center

“The dogs are responding well,” Otto tells Mental Floss, explaining that the training program is at the stage of "exposing them to the odor and having them recognize it.”

The dogs involved in the project were chosen for their calm-but-curious demeanors and sensitive noses (one also works as a drug-detection dog when she’s not training on pottery). They had to be motivated enough to want to hunt down the cotton balls, but not aggressive or easily distracted.

Right now, the dogs train three days a week, and will continue to work on their pottery-detection skills for the first stage of the project, which the researchers expect will last for the next nine months. Depending on how the first phase of the training goes, the researchers hope to be able to then take the dogs out into the field to see if they can find the odor of ancient pottery in real-life situations, like in suitcases, rather than in a laboratory setting. Eventually, they also hope to train the dogs on other types of objects, and perhaps even pinpoint the chemical signatures that make artifacts smell distinct.

Pottery-sniffing dogs won’t be showing up at airport customs or on shipping docks soon, but one day, they could be as common as drug-sniffing canines. If dogs can detect low blood sugar or find a tiny USB drive hidden in a house, surely they can figure out if you’re smuggling a sculpture made thousands of years ago in your suitcase.

nextArticle.image_alt|e
iStock
arrow
Medicine
New Cancer-Fighting Nanobots Can Track Down Tumors and Cut Off Their Blood Supply
iStock
iStock

Scientists have developed a new way to cut off the blood flow to cancerous tumors, causing them to eventually shrivel up and die. As Business Insider reports, the new treatment uses a design inspired by origami to infiltrate crucial blood vessels while leaving the rest of the body unharmed.

A team of molecular chemists from Arizona State University and the Chinese Academy of Sciences describe their method in the journal Nature Biotechnology. First, they constructed robots that are 1000 times smaller than a human hair from strands of DNA. These tiny devices contain enzymes called thrombin that encourage blood clotting, and they're rolled up tightly enough to keep the substance contained.

Next, researchers injected the robots into the bloodstreams of mice and small pigs sick with different types of cancer. The DNA sought the tumor in the body while leaving healthy cells alone. The robot knew when it reached the tumor and responded by unfurling and releasing the thrombin into the blood vessel that fed it. A clot started to form, eventually blocking off the tumor's blood supply and causing the cancerous tissues to die.

The treatment has been tested on dozen of animals with breast, lung, skin, and ovarian cancers. In mice, the average life expectancy doubled, and in three of the skin cancer cases tumors regressed completely.

Researchers are optimistic about the therapy's effectiveness on cancers throughout the body. There's not much variation between the blood vessels that supply tumors, whether they're in an ovary in or a prostate. So if triggering a blood clot causes one type of tumor to waste away, the same method holds promise for other cancers.

But before the scientists think too far ahead, they'll need to test the treatments on human patients. Nanobots have been an appealing cancer-fighting option to researchers for years. If effective, the machines can target cancer at the microscopic level without causing harm to healthy cells. But if something goes wrong, the bots could end up attacking the wrong tissue and leave the patient worse off. Study co-author Hao Yan believes this latest method may be the one that gets it right. He said in a statement, "I think we are much closer to real, practical medical applications of the technology."

[h/t Business Insider]

SECTIONS

arrow
LIVE SMARTER
More from mental floss studios