CLOSE
Original image

That Time the U.S. and Britain Nearly Went to War Over a Pig

Original image

Dan Lewis runs the wildly popular daily newsletter Now I Know (“Learn Something New Every Day, By Email”). To subscribe to his daily email, click here.

The United States and Britain have been adversaries at war twice: the American Revolution and the War of 1812. For years the nations have been close allies. But for a few months in 1859, the two sides were hostile once again, with over 400 American soldiers (and roughly a dozen cannons) facing off against more than 2,000 British troops and five British warships.

The good news: the total casualty count from the war was only one — one pig, that is.

After the War of 1812, most of the Pacific Northwest was jointly occupied by the U.S. and Britain. Over time, the two nations came to an agreement, the Oregon Treaty, that divided the territory at the 49th Parallel, forming the modern border between the state of Washington (U.S.) and the province of British Columbia (Canada). An exception was made for Vancouver Island, which was placed entirely under British control even though it dipped below the 49th Parallel. The Oregon Treaty specifically drew the line of demarcation separating the two as “the middle of the channel which separates the continent from Vancouver Island.”

The problem?

The San Juan Islands, pictured, are in the middle of that unnamed “channel,” and create three separate ”middle” channels. For a dozen years after signing the Oregon Treaty, neither side particularly liked the other’s interpretation of which channel was the true divider. The U.S. preferred the Haro Strait, the blue line pictured in the map; the U.K. preferred the Rosario Strait, denoted by the red line. And this question of ownership causes practical problems: The British Hudson Bay Company set up a sheep ranch on San Juan Island while a few dozen Americans settled there as well.

On June 15, 1859 — thirteen years to the day that the two nations signed the Oregon Treaty — an American farmer named Lyman Cutlar noticed a pig, owned by Charles Griffin, an employee of the Hudson Bay Company, eating one of his potato crops. Cutlar considered the pig a trespasser and shot it. Cutlar offered Griffin $10 in compensation; Griffin demanded $100. Cutlar withdrew his offer, now believing he was fully within his rights to shoot the trespasser. Griffin called upon the British authorities to arrest Cutlar. Cutlar and other American settlers, in turn, requested that the American military protect them from the British.

Things quickly spiraled out of hand and, within two months, the forces described above camped on and around San Juan Island, both with strict orders not to fire the first shot. (Opposing troops did, however, toss insults, hoping to coax the other into violating this order.)

Things came to a head when word of the issue reached Washington, D.C., and London. Both sides wished to keep this conflict bloodless, and agreed to jointly occupy San Juan Island peacefully, each with a military base on the island. In 1874, a panel of international arbitrators declared the Haro Strait to be the border, and awarded San Juan Island to the United States; the British closed up their base soon thereafter.

To subscribe to Dan’s daily email Now I Know, click here. You can also follow him on Twitter.

Original image
iStock / Collage by Jen Pinkowski
arrow
The Elements
9 Diamond-Like Facts About Carbon
Original image
iStock / Collage by Jen Pinkowski

How well do you know the periodic table? Our series The Elements explores the fundamental building blocks of the observable universe—and their relevance to your life—one by one.
 
 
It can be glittering and hard. It can be soft and flaky. It can look like a soccer ball. Carbon is the backbone of every living thing—and yet it just might cause the end of life on Earth as we know it. How can a lump of coal and a shining diamond be composed of the same material? Here are eight things you probably didn't know about carbon.

1. IT'S THE "DUCT TAPE OF LIFE."

It's in every living thing, and in quite a few dead ones. "Water may be the solvent of the universe," writes Natalie Angier in her classic introduction to science, The Canon, "but carbon is the duct tape of life." Not only is carbon duct tape, it's one hell of a duct tape. It binds atoms to one another, forming humans, animals, plants and rocks. If we play around with it, we can coax it into plastics, paints, and all kinds of chemicals.

2. IT'S ONE OF THE MOST ABUNDANT ELEMENTS IN THE UNIVERSE.

It sits right at the top of the periodic table, wedged in between boron and nitrogen. Atomic number 6, chemical sign C. Six protons, six neutrons, six electrons. It is the fourth most abundant element in the universe after hydrogen, helium, and oxygen, and 15th in the Earth's crust. While its older cousins hydrogen and helium are believed to have been formed during the tumult of the Big Bang, carbon is thought to stem from a buildup of alpha particles in supernova explosions, a process called supernova nucleosynthesis.

3. IT'S NAMED AFTER COAL.

While humans have known carbon as coal and—after burning—soot for thousands of years, it was Antoine Lavoisier who, in 1772, showed that it was in fact a unique chemical entity. Lavoisier used an instrument that focused the Sun's rays using lenses which had a diameter of about four feet. He used the apparatus, called a solar furnace, to burn a diamond in a glass jar. By analyzing the residue found in the jar, he was able to show that diamond was comprised solely of carbon. Lavoisier first listed it as an element in his textbook Traité Élémentaire de Chimie, published in 1789. The name carbon derives from the French charbon, or coal.

4. IT LOVES TO BOND.

It can form four bonds, which it does with many other elements, creating hundreds of thousands of compounds, some of which we use daily. (Plastics! Drugs! Gasoline!) More importantly, those bonds are both strong and flexible.

5. NEARLY 20 PERCENT OF YOUR BODY IS CARBON.

May Nyman, a professor of inorganic chemistry at Oregon State University in Corvallis, Oregon tells Mental Floss that carbon has an almost unbelievable range. "It makes up all life forms, and in the number of substances it makes, the fats, the sugars, there is a huge diversity," she says. It forms chains and rings, in a process chemists call catenation. Every living thing is built on a backbone of carbon (with nitrogen, hydrogen, oxygen, and other elements). So animals, plants, every living cell, and of course humans are a product of catenation. Our bodies are 18.5 percent carbon, by weight.

And yet it can be inorganic as well, Nyman says. It teams up with oxygen and other substances to form large parts of the inanimate world, like rocks and minerals.

6. WE DISCOVERED TWO NEW FORMS OF IT ONLY RECENTLY.

Carbon is found in four major forms: graphite, diamonds, fullerenes, and graphene. "Structure controls carbon's properties," says Nyman.  Graphite ("the writing stone") is made up of loosely connected sheets of carbon formed like chicken wire. Penciling something in actually is just scratching layers of graphite onto paper. Diamonds, in contrast, are linked three-dimensionally. These exceptionally strong bonds can only be broken by a huge amount of energy. Because diamonds have many of these bonds, it makes them the hardest substance on Earth.

Fullerenes were discovered in 1985 when a group of scientists blasted graphite with a laser and the resulting carbon gas condensed to previously unknown spherical molecules with 60 and 70 atoms. They were named in honor of Buckminster Fuller, the eccentric inventor who famously created geodesic domes with this soccer ball–like composition. Robert Curl, Harold Kroto, and Richard Smalley won the 1996 Nobel Prize in Chemistry for discovering this new form of carbon.

The youngest member of the carbon family is graphene, found by chance in 2004 by Andre Geim and Kostya Novoselov in an impromptu research jam. The scientists used scotch tape—yes, really—to lift carbon sheets one atom thick from a lump of graphite. The new material is extremely thin and strong. The result: the Nobel Prize in Physics in 2010.

7. DIAMONDS AREN'T CALLED "ICE" BECAUSE OF THEIR APPEARANCE.

Diamonds are called "ice" because their ability to transport heat makes them cool to the touch—not because of their look. This makes them ideal for use as heat sinks in microchips. (Synthethic diamonds are mostly used.) Again, diamonds' three-dimensional lattice structure comes into play. Heat is turned into lattice vibrations, which are responsible for diamonds' very high thermal conductivity.

8. IT HELPS US DETERMINE THE AGE OF ARTIFACTS—AND PROVE SOME OF THEM FAKE.

American scientist Willard F. Libby won the Nobel Prize in Chemistry in 1960 for developing a method for dating relics by analyzing the amount of a radioactive subspecies of carbon contained in them. Radiocarbon or C14 dating measures the decay of a radioactive form of carbon, C14, that accumulates in living things. It can be used for objects that are as much as 50,000 years old. Carbon dating help determine the age of Ötzi the Iceman, a 5300-year-old corpse found frozen in the Alps. It also established that Lancelot's Round Table in Winchester Cathedral was made hundreds of years after the supposed Arthurian Age.

9. TOO MUCH OF IT IS CHANGING OUR WORLD.

Carbon dioxide (CO2) is an important part of a gaseous blanket that is wrapped around our planet, making it warm enough to sustain life. But burning fossil fuels—which are built on a carbon backbone—releases more carbon dioxide, which is directly linked to global warming. A number of ways to remove and store carbon dioxide have been proposed, including bioenergy with carbon capture and storage, which involves planting large stands of trees, harvesting and burning them to create electricity, and capturing the CO2 created in the process and storing it underground. Yet another approach that is being discussed is to artificially make oceans more alkaline in order to let them to bind more CO2. Forests are natural carbon sinks, because trees capture CO2 during photosynthesis, but human activity in these forests counteracts and surpasses whatever CO2 capture gains we might get. In short, we don't have a solution yet to the overabundance of C02 we've created in the atmosphere.

Original image
iStock
arrow
Big Questions
Why Don't We Eat Turkey Tails?
Original image
iStock

Turkey sandwiches. Turkey soup. Roasted turkey. This year, Americans will consume roughly 245 million birds, with 46 million being prepared and presented on Thanksgiving. What we don’t eat will be repurposed into leftovers.

But there’s one part of the turkey that virtually no family will have on their table: the tail.

Despite our country’s obsession with fattening, dissecting, and searing turkeys, we almost inevitably pass up the fat-infused rear portion. According to Michael Carolan, professor of sociology and associate dean for research at the College for Liberal Arts at Colorado State University, that may have something to do with how Americans have traditionally perceived turkeys. Consumption was rare prior to World War II. When the birds were readily available, there was no demand for the tail because it had never been offered in the first place.

"Tails did and do not fit into what has become our culinary fascination with white meat," Carolan tells Mental Floss. "But also from a marketing [and] processor standpoint, if the consumer was just going to throw the tail away, or will not miss it if it was omitted, [suppliers] saw an opportunity to make additional money."

Indeed, the fact that Americans didn't have a taste for tail didn't prevent the poultry industry from moving on. Tails were being routed to Pacific Island consumers in the 1950s. Rich in protein and fat—a turkey tail is really a gland that produces oil used for grooming—suppliers were able to make use of the unwanted portion. And once consumers were exposed to it, they couldn't get enough.

“By 2007,” according to Carolan, “the average Samoan was consuming more than 44 pounds of turkey tails every year.” Perhaps not coincidentally, Samoans also have alarmingly high obesity rates of 75 percent. In an effort to stave off contributing factors, importing tails to the Islands was banned from 2007 until 2013, when it was argued that doing so violated World Trade Organization rules.

With tradition going hand-in-hand with commerce, poultry suppliers don’t really have a reason to try and change domestic consumer appetites for the tails. In preparing his research into the missing treat, Carolan says he had to search high and low before finally finding a source of tails at a Whole Foods that was about to discard them. "[You] can't expect the food to be accepted if people can't even find the piece!"

Unless the meat industry mounts a major campaign to shift American tastes, Thanksgiving will once again be filled with turkeys missing one of their juicier body parts.

Have you got a Big Question you'd like us to answer? If so, let us know by emailing us at bigquestions@mentalfloss.com.

SECTIONS

arrow
LIVE SMARTER
More from mental floss studios